NUMERICAL ANALYSIS OF HEAT TRANSFER IN A FLAT-PLATE SOLAR COLLECTOR WITH NANOFLUIDS

被引:10
|
作者
Yurddas, Ali [1 ]
Cerci, Yunus [2 ]
机构
[1] Celal Bayar Univ, Dept Mech Engn, TR-45140 Muradiye, Manisa, Turkey
[2] Adnan Menderes Univ, Dept Mech Engn, TR-09010 Aytepe, Aydin, Turkey
关键词
flat-plate solar collector; nanofluid; finite volume method; mixed convection; LAMINAR MIXED CONVECTION; TRANSFER ENHANCEMENT; THERMAL-CONDUCTIVITY; NATURAL-CONVECTION; FORCED-CONVECTION; HORIZONTAL TUBE; INCLINED TUBES; FLOW; EFFICIENCY; ENCLOSURE;
D O I
10.1615/HeatTransRes.2016012266
中图分类号
O414.1 [热力学];
学科分类号
摘要
Heat transfer aspects of a typical flat-plate solar collector utilizing water-based nanofluids as the working fluid were analyzed numerically. Water-based nanofluids of various compositions containing metallic Al2O3 and Cu nanoparticles with volume fractions ranging from 1% to 5% were examined, and the effects of the nanofluids on the heat transfer were quantified. Relevant parameters such as the heat flux, Reynolds number, and the collector tilt angle were calculated and compared to each other at different boundary conditions. The flat-plate solar collector geometry was simplified, and only a fluid carrying pipe with an absorber surface was chosen as a numerical model with a particular attention to symmetry, instead of taking the entire collector geometry. The numerical model was controlled and confirmed by applying it to similar studies existing in the pertinent literature. All numerical solutions were carried out by using a commercial finite volume soft ware package called ANSYS Fluent. The results show that the nanofluids increase the heat transfer rate ranging from 1% to 8%, when compared to water as a working fluid.
引用
收藏
页码:681 / 714
页数:34
相关论文
共 50 条
  • [31] Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector
    Moghadam, Ali Jabari
    Farzane-Gord, Mahmood
    Sajadi, Mahmood
    Hoseyn-Zadeh, Monireh
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2014, 58 : 9 - 14
  • [32] Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids
    Akram, Naveed
    Montazer, Elham
    Kazi, S. N.
    Soudagar, Manzoore Elahi M.
    Ahmed, Waqar
    Zubir, Mohd Nashrul Mohd
    Afzal, Asif
    Muhammad, Mohd Ridha
    Ali, Hafiz Muhammad
    Marquez, Fausto Pedro Garcia
    Sarsam, Wail Sami
    ENERGY, 2021, 227
  • [33] The efficiency of new solar flat-plate collector
    Duan, Rui
    RENEWABLE AND SUSTAINABLE ENERGY, PTS 1-7, 2012, 347-353 : 1337 - 1341
  • [34] Thermal Performance Analysis of Porous Foam-Assisted Flat-Plate Solar Collectors with Nanofluids
    Lin, Xinwei
    Xia, Yongfang
    Cheng, Zude
    Liu, Xianshuang
    Fu, Yingmei
    Li, Lingyun
    Zhou, Wenqin
    SUSTAINABILITY, 2024, 16 (02)
  • [35] Numerical study of heat transfer enhancement for a novel flat-plate solar water collector using metal-foam blocks
    Chen, Chih-Cheng
    Huang, Po-Chuan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (23-24) : 6734 - 6756
  • [36] A review of studies on using nanofluids in flat-plate solar collectors
    Sarsam, Wail Sami
    Kazi, S. N.
    Badarudin, A.
    SOLAR ENERGY, 2015, 122 : 1245 - 1265
  • [37] Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid
    Saffarian, Mohammad Reza
    Moravej, Mojtaba
    Doranehgard, Mohammad Hossein
    RENEWABLE ENERGY, 2020, 146 : 2316 - 2329
  • [38] Experimental evaluation of flat plate solar collector using nanofluids
    Verma, Sujit Kumar
    Tiwari, Arun Kumar
    Chauhan, Durg Singh
    ENERGY CONVERSION AND MANAGEMENT, 2017, 134 : 103 - 115
  • [39] Heat transfer performance analysis of a solar flat-plate collector with an integrated metal foam porous structure filled with paraffin
    Chen, Zhenqian
    Gu, Mingwei
    Peng, Donghua
    APPLIED THERMAL ENGINEERING, 2010, 30 (14-15) : 1967 - 1973
  • [40] Macro Flat-Plate Solar Thermal Collector With Rectangular Channels
    Ibrahim, Oussama
    Younes, Rafic
    Ibrahim, Mohamad
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2018, 140 (06):