Nonlinear stability of the Lagrangian libration points in the Chermnykh problem

被引:52
作者
Gozdziewski, K [1 ]
Maciejewski, AJ [1 ]
机构
[1] Nicholas Copernicus Univ, Torun Ctr Astron, Torun, Poland
关键词
three-body problem; libration points; stability; normal forms;
D O I
10.1023/A:1008250207046
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we consider the problem of motion of an infinitesimal point mass in the gravity field of an uniformly rotating dumb-bell. The aim of our study is to investigate Liapunov stability of Lagrangian libration points of this problem. We analyze the stability of libration points in the whole range of parameters omega, mu of the problem. In particular, we consider all resonance cases when the order of resonance is not greater than five.
引用
收藏
页码:41 / 58
页数:18
相关论文
共 19 条
[1]  
Chermnykh S. V, 1987, VESTIN LENINGR U, V2, P10
[2]  
GOZDZIEWSKI K, 1991, CELESTIAL MECH, V51, P195
[3]  
GOZDZIEWSKI K, 1998, UNPUB SPECIAL VERSIO
[4]   SYSTEM FOR NORMALIZATION OF A HAMILTONIAN FUNCTION BASED ON LIE SERIES [J].
Gozdziewski, Krzysztof ;
Maciejewski, Andrzej J. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1990, 49 (01) :1-10
[5]  
GREBENIKOV EA, 1986, METHOD AVERAGING APP
[6]  
Kokoriev A.A., 1988, VESTN LENINGR U, V1, P75
[7]  
KOVALEV AM, 1977, DOKL AKAD NAUK UKR A, V11, P1010
[8]  
MACIEJEWSKI AJ, 1987, THESIS N COPERNICUS
[9]  
Markeev A., 1978, LIBRATION POINTS CEL
[10]   THE STABILITY OF THE LAGRANGE TRIANGULAR POINT AND A THEOREM OF ARNOLD [J].
MEYER, KR ;
SCHMIDT, DS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :222-236