On the axiomatic theory of spectrum .2.

被引:0
作者
Mbekhta, M [1 ]
Muller, V [1 ]
机构
[1] ACAD SCI CZECH REPUBL,INST MATH,CR-11567 PRAGUE 1,CZECH REPUBLIC
关键词
spectral mapping theorem; ascent; descent; semiregular operators; quasi-Fredholm operators;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a survey of results concerning various classes of bounded linear operators in a Banach space defined by means of kernels and ranges. We show that many of these classes define a spectrum that satisfies the spectral mapping property.
引用
收藏
页码:129 / 147
页数:19
相关论文
共 25 条
[1]  
[Anonymous], 1972, RUSS MATH SURV, DOI DOI 10.1070/RM1972V027N01ABEH001364
[2]  
APOSTOL C, 1985, MICH MATH J, V32, P279
[3]  
BERKANI M, IN PRESS P AM MATH S
[4]  
BUONI JJ, 1977, P AM MATH SOC, V66, P301
[5]   SEMI-FREDHOLM OPERATORS AND SEQUENCE CONDITIONS [J].
FORSTER, KH ;
LIEBETRAU, EO .
MANUSCRIPTA MATHEMATICA, 1983, 44 (1-3) :35-44
[6]   UNIFORM ASCENT AND DESCENT OF BOUNDED OPERATORS [J].
GRABINER, S .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1982, 34 (02) :317-337
[7]   ASCENT, DESCENT AND COMPACT PERTURBATIONS [J].
GRABINER, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 71 (01) :79-80
[8]   SPECTRAL MAPPING THEOREMS FOR ESSENTIAL SPECTRA [J].
GRAMSCH, B ;
LAY, D .
MATHEMATISCHE ANNALEN, 1971, 192 (01) :17-&
[9]  
HARTE RE, 1972, P ROY IRISH ACAD A, V72, P89
[10]  
KAASHOEK MA, 1965, INDAG MATH, V27, P452