Extreme bilinear forms on Rn with the supremum norm

被引:0
作者
Kim, Sung Guen [1 ]
机构
[1] Kyungpook Natl Univ, Dept Math, Daegu 702701, South Korea
关键词
Bilinear forms; Symmetric bilinear forms; Extreme points; EXPOSED 2-HOMOGENEOUS POLYNOMIALS; UNIT BALL; HOMOGENEOUS POLYNOMIALS; GEOMETRY; POINTS; SPACES; POLARIZATION;
D O I
10.1007/s10998-018-0246-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For every n = 2 this paper is devoted to the description of the sets of extreme points of the closed unit balls of L(2ln8) and Ls (2ln8), where L(2ln8) is the space of bilinear forms on Rn with the supremum norm, and Ls (2ln8) is the subspace of L(2ln8) consisting of symmetric bilinear forms. First we obtain an elegant formula for calculating the norm of a given bilinear form T. L(2ln8). We present a characterization of the sets ext BL(2ln8) and ext BLs (2ln8), correspondingly. We obtain a sufficient condition for a given bilinear form T. ext BLs (2ln8) to be considered as an element of ext BLs (2ln+ 1 8). As applications we show that for every n = 3 the relations ext BL(2l28). ext BL(2ln8) and ext BLs (2l28). ext BLs (2ln8) hold true. In addition it is shown that for n = 3, ext BLs (2ln8) . ext BL(2ln8) in contrast to the case n = 2.
引用
收藏
页码:274 / 290
页数:17
相关论文
共 39 条
  • [1] Supremum norms for quadratic polynomials
    Aron, RM
    Klimek, M
    [J]. ARCHIV DER MATHEMATIK, 2001, 76 (01) : 73 - 80
  • [2] Cavalcante W., ARXIV160301535V2
  • [3] Choi Y. S., 1999, Results Math., V36, P26, DOI [10.1007/BF03322099, DOI 10.1007/BF03322099]
  • [4] The unit ball of P(2l22)
    Choi, YS
    Kim, SG
    [J]. ARCHIV DER MATHEMATIK, 1998, 71 (06) : 472 - 480
  • [5] Choi YS, 2004, INDIAN J PURE AP MAT, V35, P37
  • [6] Extreme polynomials and multilinear forms on l1
    Choi, YS
    Kim, SG
    Ki, H
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 228 (02) : 467 - 482
  • [7] Choi YS, 1998, INDIAN J PURE AP MAT, V29, P983
  • [8] Dineen S., 1999, COMPLEX ANAL INFINIT
  • [9] Gámez-Merino JL, 2013, J CONVEX ANAL, V20, P125
  • [10] Grecu BC, 2009, MATH Z, V263, P775, DOI 10.1007/s00209-008-0438-y