Island artificial bee colony for global optimization

被引:39
作者
Awadallah, Mohammed A. [1 ]
Al-Betar, Mohammed Azmi [2 ]
Bolaji, Asaju La'aro [3 ]
Abu Doush, Iyad [4 ,5 ]
Hammouri, Abdelaziz, I [6 ]
Mafarja, Majdi [7 ]
机构
[1] Al Aqsa Univ, Dept Comp Sci, POB 4051, Gaza, Palestine
[2] Al Balqa Appl Univ, Al Huson Univ Coll, Dept Informat Technol, Irbid, Jordan
[3] Fed Univ Wukari, Dept Comp Sci, PMB 1020, Wukari, Taraba State, Nigeria
[4] Amer Univ Kuwait, Comp Sci & Informat Syst Dept, Salmiya, Kuwait
[5] Yarmouk Univ, Comp Sci Dept, Irbid, Jordan
[6] Al Balqa Appl Univ, Dept Comp Informat Syst, Al Salt 19117, Jordan
[7] Birzeit Univ, Dept Comp Sci, POB 14, West Bank, Palestine
关键词
Artificial bee colony; Island-based model; Structured population; Population diversity; Optimization; AUTOMATIC-GENERATION CONTROL; SHOP SCHEDULING PROBLEM; GENETIC ALGORITHM; MODEL; SEARCH; IMPACT;
D O I
10.1007/s00500-020-04760-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an efficient version of artificial bee colony (ABC) algorithm based on the island model concepts. The new version is called the island artificial bee colony (iABC) algorithm. It uses the structured population concept by applying the island model to improve the diversification capabilities of ABC. In the island model, the population is divided into a set of sub-populations called islands, each of which is manipulated separately by an independent variant of the ABC. After a predefined number of iterations, the islands exchange their solutions by migration. This process can help ABC in controlling the diversity of the population during the search process and thus improve the performance. The proposed iABC is evaluated using global optimization functions established by the IEEE-CEC 2015 which include 15 test functions with various dimensions and complexities (i.e., 10, 30, and 50). In order to evaluate the performance of iABC, various parameter settings are utilized to test the effectiveness of their convergence properties. Furthermore, the performance of iABC is compared against 19 comparative methods that used the same IEEE-CEC 2015 test functions. The results show that iABC produced better results when compared with ABC in all IEEE-CEC 2015 test functions, while the results of iABC better than those of the other island-based algorithm on almost all test functions. Furthermore, iABC is able to obtain three new results for three test functions better than all the comparative methods. Using Friedman test and Holm's procedure, iABC is ranked third, seventh, and ninth out of 19 comparative methods for the test functions with 10, 30, 50 dimensionality, respectively.
引用
收藏
页码:13461 / 13487
页数:27
相关论文
共 78 条
[11]   Matching island topologies to problem structure in parallel evolutionary algorithms [J].
Arnaldo, Ignacio ;
Contreras, Ivan ;
Millan-Ruiz, David ;
Ignacio Hidalgo, J. ;
Krasnogor, Natalio .
SOFT COMPUTING, 2013, 17 (07) :1209-1225
[12]   A new optimized fuzzy FOPI-FOPD controller for automatic generation control of electric power systems [J].
Arya, Yogendra .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (11) :5611-5629
[13]   Impact of hydrogen aqua electrolyzer-fuel cell units on automatic generation control of power systems with a new optimal fuzzy TIDF-II controller [J].
Arya, Yogendra .
RENEWABLE ENERGY, 2019, 139 (468-482) :468-482
[14]  
Awad N, 2015, IEEE C EVOL COMPUTAT, P1098, DOI 10.1109/CEC.2015.7257012
[15]   Natural selection methods for artificial bee colony with new versions of onlooker bee [J].
Awadallah, Mohammed A. ;
Al-Betar, Mohammed Azmi ;
Bolaji, Asaju La'aro ;
Alsukhni, Emad Mahmoud ;
Al-Zoubi, Hassan .
SOFT COMPUTING, 2019, 23 (15) :6455-6494
[16]   A hybrid artificial bee colony for a nurse rostering problem [J].
Awadallah, Mohammed A. ;
Bolaji, Asaju La'aro ;
Al-Betar, Mohammed Azmi .
APPLIED SOFT COMPUTING, 2015, 35 :726-739
[17]   A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems [J].
Aydilek, Ibrahim Berkan .
APPLIED SOFT COMPUTING, 2018, 66 :232-249
[18]  
Aydin D, 2015, IEEE C EVOL COMPUTAT, P1067, DOI 10.1109/CEC.2015.7257008
[19]  
Bolaji Asaju La'Aro, 2013, Journal of Theoretical and Applied Information Technology, V47, P434
[20]   A Hybrid Nature-Inspired Artificial Bee Colony Algorithm for Uncapacitated Examination Timetabling Problems [J].
Bolaji, Asaju ;
Khader, Ahamad ;
Al-Betar, Mohammed ;
Awadallah, Mohammed .
JOURNAL OF INTELLIGENT SYSTEMS, 2015, 24 (01) :37-54