Metabolic modeling of clostridia: current developments and applications

被引:37
作者
Dash, Satyakam [1 ]
Ng, Chiam Yu [1 ]
Maranas, Costas D. [1 ]
机构
[1] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
基金
美国能源部;
关键词
genome scale metabolic modeling; clostridia; solventogenic; cellulotytic; Wood-Ljungdahl pathway; GENOME-SCALE RECONSTRUCTION; BUTANOL-ETHANOL FERMENTATION; ESCHERICHIA-COLI; CELLULAR-METABOLISM; GENE ESSENTIALITY; KINETIC-MODEL; ACETOBUTYLICUM; NETWORK; EXPRESSION; STRAIN;
D O I
10.1093/femsle/fnw004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Anaerobic Clostridium spp. is an important bioproduction microbial genus that can produce solvents and utilize a broad spectrum of substrates including cellulose and syngas. Genome-scale metabolic (GSM) models are increasingly being put forth for various clostridial strains to explore their respective metabolic capabilities and suitability for various bioconversions. In this study, we have selected representative GSM models for six different clostridia (Clostridium acetobutylicum, C. beijerinckii, C. butyricum, C. cellulolyticum, C. ljungdahlii and C. thermocellum) and performed a detailed model comparison contrasting their metabolic repertoire. We also discuss various applications of these GSM models to guide metabolic engineering interventions as well as assessing cellular physiology.
引用
收藏
页数:10
相关论文
共 80 条
[1]   Metabolome Remodeling during the Acidogenic-Solventogenic Transition in Clostridium acetobutylicum [J].
Amador-Noguez, Daniel ;
Brasg, Ian A. ;
Feng, Xiao-Jiang ;
Roquet, Nathaniel ;
Rabinowitz, Joshua D. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (22) :7984-7997
[2]   Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for 13C metabolic flux analysis [J].
Au, Jennifer ;
Choi, Jungik ;
Jones, Shawn W. ;
Venkataramanan, Keerthi P. ;
Antoniewicz, Maciek R. .
METABOLIC ENGINEERING, 2014, 26 :23-33
[3]   The cellulosome of Clostridium thermocellum [J].
Béguin, P ;
Alzari, PM .
BIOCHEMICAL SOCIETY TRANSACTIONS, 1998, 26 (02) :178-185
[4]   Metabolic modelling of syntrophic-like growth of a 1,3-propanediol producer, Clostridium butyricum, and a methanogenic archeon, Methanosarcina mazei, under anaerobic conditions [J].
Bizukojc, Marcin ;
Dietz, David ;
Sun, Jibin ;
Zeng, An-Ping .
BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2010, 33 (04) :507-523
[5]   Integration of expression data in genome-scale metabolic network reconstructions [J].
Blazier, Anna S. ;
Papin, Jason A. .
FRONTIERS IN PHYSIOLOGY, 2012, 3
[6]   Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation [J].
Buckel, Wolfgang ;
Thauer, Rudolf K. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2013, 1827 (02) :94-113
[7]   OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization [J].
Burgard, AP ;
Pharkya, P ;
Maranas, CD .
BIOTECHNOLOGY AND BIOENGINEERING, 2003, 84 (06) :647-657
[8]  
Chen GQ, 2010, MICROBIOL MONOGR, V14, P1, DOI 10.1007/978-3-642-03287-5
[9]   Improving prediction fidelity of cellular metabolism with kinetic descriptions [J].
Chowdhury, Anupam ;
Khodayari, Ali ;
Maranas, Costas D. .
CURRENT OPINION IN BIOTECHNOLOGY, 2015, 36 :57-64
[10]   Using Gene Essentiality and Synthetic Lethality Information to Correct Yeast and CHO Cell Genome-Scale Models [J].
Chowdhury, Ratul ;
Chowdhury, Anupam ;
Maranas, Costas D. .
METABOLITES, 2015, 5 (04) :536-570