Hydrogen Production on a Hybrid Photocatalytic System Composed of Ultrathin CdS Nanosheets and a Molecular Nickel Complex

被引:55
作者
Xu, You [1 ,2 ]
Yin, Xuguang [1 ,2 ]
Huang, Yi [1 ,2 ]
Du, Pingwu [3 ]
Zhang, Bin [1 ,2 ]
机构
[1] Tianjin Univ, Sch Sci, Dept Chem, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Univ Sci & Technol China, CAS Key Lab Mat Energy Convers, Dept Mat Sci & Engn, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
artificial photosynthesis; electron transfer; hydrogen production; molecular catalysts; nanostructures; H-2; PRODUCTION; SEMICONDUCTOR NANOCRYSTALS; CHARGE SEPARATION; WATER-OXIDATION; CARBON NITRIDE; EFFICIENT; EVOLUTION; CATALYST; PHOTOGENERATION; GENERATION;
D O I
10.1002/chem.201406642
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The production of clean and renewable hydrogen through water splitting by using solar energy has received much attention due to the increasing global energy demand. We report an economic and artificial photosynthetic system free of noble metals, consisting of ultrathin CdS nanosheets as a photosensitizer and nickel-based complex as a molecular catalyst. Emission quenching and flash photolysis studies reveal that this hybrid system allows for effective electron transfer from the excited CdS nanosheets to the nickel-based complex to generate reduced intermediate species for efficient hydrogen evolution. Notably, the unique morphological and structural features of the ultrathin CdS nanosheets contribute to the highly efficient photocatalytic performance. As a consequence, the resulting system shows exceptional activity and stability for photocatalytic hydrogen evolution in aqueous solution with a turnover number (TON) of about 28000 versus catalyst and a lifetime of over 90h under visible light irradiation.
引用
收藏
页码:4571 / 4575
页数:5
相关论文
共 63 条
[1]  
[Anonymous], 2013, Angew. Chem, DOI DOI 10.1002/ANGE.201303110
[2]  
[Anonymous], 2014, ANGEW CHEM INT EDIT
[3]  
[Anonymous], ANGEW CHEM
[4]   Characterization of Photochemical Processes for H2 Production by CdS Nanorod-[FeFe] Hydrogenase Complexes [J].
Brown, Katherine A. ;
Wilker, Molly B. ;
Boehm, Marko ;
Dukovic, Gordana ;
King, Paul W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (12) :5627-5636
[5]   Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime [J].
Cao, Shao-Wen ;
Liu, Xin-Feng ;
Yuan, Yu-Peng ;
Zhang, Zhen-Yi ;
Fang, Jun ;
Loo, Say Chye Joachim ;
Barber, James ;
Sum, Tze Chien ;
Xue, Can .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (42) :18363-18366
[6]   Photocatalytic Hydrogen Production using Polymeric Carbon Nitride with a Hydrogenase and a Bioinspired Synthetic Ni Catalyst [J].
Caputo, Christine A. ;
Gross, Manuela A. ;
Lau, Vincent W. ;
Cavazza, Christine ;
Lotsch, Bettina V. ;
Reisner, Erwin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (43) :11538-11542
[7]   Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals [J].
Chaudhary, Yatendra S. ;
Woolerton, Thomas W. ;
Allen, Christopher S. ;
Warner, Jamie H. ;
Pierce, Elizabeth ;
Ragsdale, Stephen W. ;
Armstrong, Fraser A. .
CHEMICAL COMMUNICATIONS, 2012, 48 (01) :58-60
[8]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[9]   Ligand Conjugation of Chemically Exfoliated MoS2 [J].
Chou, Stanley S. ;
De, Mrinmoy ;
Kim, Jaemyung ;
Byun, Segi ;
Dykstra, Conner ;
Yu, Jin ;
Huang, Jiaxing ;
Dravid, Vinayak P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (12) :4584-4587
[10]   Calcium niobate semiconductor nanosheets as catalysts for photochemical hydrogen evolution from water [J].
Compton, Owen C. ;
Carroll, Elizabeth C. ;
Kim, Jin Y. ;
Larsen, Delmar S. ;
Osterloh, Frank E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (40) :14589-14592