Single-Image Super-Resolution Based on Compact KPCA Coding and Kernel Regression

被引:20
|
作者
Zhou, Fei [1 ]
Yuan, Tingrong [1 ]
Yang, Wenming [1 ]
Liao, Qingmin [1 ]
机构
[1] Tsinghua Univ, Shenzhen Key Lab Informat Sci & Technol, Shenzhen Engn Lab IS&DRM, Dept Elect Engn,Grad Sch Shenzhen, Shenzhen 518057, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Kernel principal analysis (KPCA); pre-image; regression; super-resolution (SR); COMPONENT ANALYSIS; INTERPOLATION; QUALITY;
D O I
10.1109/LSP.2014.2360038
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we propose a novel approach for single-image super-resolution (SR). Our method is based on the idea of learning a dictionary which can capture the high-order statistics of high-resolution (HR) images. It is of central importance in image SR application, since the high-order statistics play a significant role in the reconstruction of HR image structure. Kernel principal component analysis (KPCA) is adopted to learn such a dictionary. A compact solution is adopted to reduce the time complexity of learning and testing for KPCA. Meanwhile, kernel ridge regression is employed to connect the input low-resolution (LR) image patches with the HR coding coefficients. Experimental results show that the proposed method is effective and efficient in comparison with state-of-art algorithms.
引用
收藏
页码:336 / 340
页数:5
相关论文
共 50 条
  • [1] Single-Image Super-Resolution by Subdictionary Coding and Kernel Regression
    Yang, Wenming
    Yuan, Tingrong
    Wang, Wei
    Zhou, Fei
    Liao, Qingmin
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (09): : 2478 - 2488
  • [2] Single-image super-resolution based on sparse kernel ridge regression
    Wu, Fanlu
    Wang, Xiangjun
    AOPC 2017: OPTICAL SENSING AND IMAGING TECHNOLOGY AND APPLICATIONS, 2017, 10462
  • [3] Single-Image Super-Resolution based on Steering Kernel and Gaussian Process Regression
    Wang, Haijun
    Nie, Yalin
    Yan, Ben
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (03)
  • [4] An adaptive regression based single-image super-resolution
    Hou, Mingzheng
    Feng, Ziliang
    Wang, Haobo
    Shen, Zhiwei
    Li, Sheng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (20) : 28231 - 28248
  • [5] Single-Image Super-Resolution via Adaptive Joint Kernel Regression
    Huang, Chen
    Ding, Xiaoqing
    Fang, Chi
    PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013, 2013,
  • [6] An adaptive regression based single-image super-resolution
    Mingzheng Hou
    Ziliang Feng
    Haobo Wang
    Zhiwei Shen
    Sheng Li
    Multimedia Tools and Applications, 2022, 81 : 28231 - 28248
  • [7] Greedy regression in sparse coding space for single-image super-resolution
    Tang, Yi
    Yuan, Yuan
    Yan, Pingkun
    Li, Xuelong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2013, 24 (02) : 148 - 159
  • [8] A Content Dependent Kernel For Single-Image Super-Resolution
    Saryazdi, Saman
    Saryazdi, Saeid
    Nezanabadipour, Hossein
    2013 5TH CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2013, : 453 - 456
  • [9] SINGLE IMAGE SUPER-RESOLUTION VIA SPARSE KPCA AND REGRESSION
    Yuan, Tingrong
    Yang, Wenming
    Zhou, Fei
    Liao, Qingmin
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2130 - 2134
  • [10] SINGLE-IMAGE SUPER-RESOLUTION VIA MULTIPLE MATRIX-VALUED KERNEL REGRESSION
    Tang, Yi
    Jiang, Zuo
    Chen, Jun-Hua
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2019, : 468 - 474