Physical interaction between nuclear accumulated CC-NB-ARC-LRR protein and WRKY64 promotes EDS1 dependent Fusarium wilt resistance in chickpea

被引:23
作者
Chakraborty, Joydeep [1 ]
Priya, Prerna [2 ]
Dastidar, Shubhra Ghosh [2 ]
Das, Sampa [1 ]
机构
[1] Bose Inst, Div Plant Biol, Centenary Campus,P-1-12, Kolkata 700054, W Bengal, India
[2] Bose Inst, Ctr Excellence Bioinformat, Centenary Campus,P-1-12, Kolkata 700054, W Bengal, India
关键词
Chickpea; EDS1; Fusarium oxysporum; Hypersensitive response; NLR; WRKY64; PLANT-DISEASE RESISTANCE; IMMUNE RECEPTOR RESISTANCE; TRANSCRIPTION FACTORS; CELL-DEATH; COILED-COIL; PATHOGEN EFFECTORS; STRUCTURAL BASIS; RUST RESISTANCE; TERMINAL DOMAIN; INNATE IMMUNITY;
D O I
10.1016/j.plantsci.2018.08.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fusarium wilt is one of the most serious diseases affecting chickpea (Cicer arietinum L.). Here, we identified a putative Resistance Gene Analog (CaRGA) from chickpea, encoding a coiled-coil (CC) nucleotide-binding oligomerization domain (NB-ARC) containing leucine-rich repeat (LRR) protein (CC-NLR protein) that confers resistance against Fusarium oxysporum f. sp. ciceri racel (Foc1). Over-expression and silencing of CaRGA in chickpea resulted in enhanced resistance and hyper-susceptibility, respectively against Focl. Furthermore, defense response to Focl depends on CC-NLR interaction with WRKY64 transcription factor. CaRGA mediated wilt resistance largely compromised when WRKY64 was silenced. We also determined in planta intramolecular interactions and self-association of chickpea CC-NLR protein. The study shows CC domain suppressing auto-activation of the full-length CC-NLR protein in the absence of pathogen through self-inhibitory intramolecular interaction with NB-ARC domain, which is attenuated by self-interactions to LRR domain. Chickpea CC-NLR protein forms homocomplexes and then interacts with WRKY64. CC-NLR protein further phosphorylates WRKY64 thereby, ubiquitination and proteasome mediated degradation are protected. Phosphorylated WRKY64 with increased stability binds to EDS1 promoter and stimulates its transcription that induces in planta ectopic cell-death. The detailed analysis of CC-NLR and WRKY interactions provide a better understanding of the immune regulation by NLR proteins under biotic stresses.
引用
收藏
页码:111 / 133
页数:23
相关论文
共 104 条
[1]   Update on the domain architectures of NLRs and R proteins [J].
Albrecht, M ;
Takken, FLW .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 339 (02) :459-462
[2]   Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 [J].
Axtell, MJ ;
Staskawicz, BJ .
CELL, 2003, 112 (03) :369-377
[3]   Structure-Function Analysis of Barley NLR Immune Receptor MLA10 Reveals Its Cell Compartment Specific Activity in Cell Death and Disease Resistance [J].
Bai, Shiwei ;
Liu, Jie ;
Chang, Cheng ;
Zhang, Ling ;
Maekawa, Takaki ;
Wang, Qiuyun ;
Xiao, Wenkai ;
Liu, Yule ;
Chai, Jijie ;
Takken, Frank L. W. ;
Schulze-Lefert, Paul ;
Shen, Qian-Hua .
PLOS PATHOGENS, 2012, 8 (06)
[4]   Elicitors, effectors, and R genes:: The new paradigm and a lifetime supply of questions [J].
Bent, Andrew F. ;
Mackey, David .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2007, 45 :399-436
[5]   Structural and Functional Analysis of a Plant Resistance Protein TIR Domain Reveals Interfaces for Self-Association, Signaling, and Autoregulation [J].
Bernoux, Maud ;
Ve, Thomas ;
Williams, Simon ;
Warren, Christopher ;
Hatters, Danny ;
Valkov, Eugene ;
Zhang, Xiaoxiao ;
Ellis, Jeffrey G. ;
Kobe, Bostjan ;
Dodds, Peter N. .
CELL HOST & MICROBE, 2011, 9 (03) :200-211
[6]   Salicylic Acid Regulates Systemic Defense Signaling in Chickpea During Fusarium oxysporum f. sp ciceri Race 1 Infection [J].
Bhar, Anirban ;
Chatterjee, Moniya ;
Gupta, Sumanti ;
Das, Sampa .
PLANT MOLECULAR BIOLOGY REPORTER, 2018, 36 (02) :162-175
[7]   Pathogen Effectors Target Arabidopsis EDS1 and Alter Its Interactions with Immune Regulators [J].
Bhattacharjee, Saikat ;
Halane, Morgan K. ;
Kim, Sang Hee ;
Gassmann, Walter .
SCIENCE, 2011, 334 (6061) :1405-1408
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   A novel role for the TIR domain in association with pathogen-derived elicitors [J].
Burch-Smith, Tessa M. ;
Schiff, Michael ;
Caplan, Jeffrey L. ;
Tsao, Jeffrey ;
Czymmek, Kirk ;
Dinesh-Kumar, Savithramma P. .
PLOS BIOLOGY, 2007, 5 (03) :501-514
[10]   Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector [J].
Caplan, Jeffrey L. ;
Mamillapalli, Padmavathi ;
Burch-Smith, Tessa M. ;
Czymmek, Kirk ;
Dinesh-Kumar, S. P. .
CELL, 2008, 132 (03) :449-462