Entropy solutions to doubly nonlinear integro-differential equations

被引:3
|
作者
Sapountzoglou, Niklas [1 ]
机构
[1] Univ Duisburg Essen, Fac Math, Thea Leymann Str 9, D-45127 Essen, Germany
关键词
Nonlinear Volterra equation; Doubly nonlinear; Entropy solution; VOLTERRA-EQUATIONS; WEAK SOLUTIONS; DIFFUSION; EXISTENCE;
D O I
10.1016/j.na.2019.111656
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider doubly nonlinear history-dependent problems of the form partial derivative(t)[k*(b(v) - b(v(0)))] - div a( x, del v) = f. The kernel k satisfies certain assumptions which are, in particular, satisfied by k(t) = t(-alpha)/Gamma(1-a), i.e., the case of fractional derivatives of order alpha is an element of (0, 1) is included. We show existence of entropy solutions in the case of a nondecreasing b. An existence result in the case of a strictly increasing b is used to get entropy solutions of approximate problems. Kruzhkov's method of doubling variables, a comparison principle and the diagonal principle are used to obtain a.e. convergence for approximate solutions. A uniqueness result has been shown in a previous work. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] EXISTENCE OF ENTROPY SOLUTIONS TO A DOUBLY NONLINEAR INTEGRO-DIFFERENTIAL EQUATION
    Scholtes, Martin
    Wittbold, Petra
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2018, 31 (5-6) : 465 - 496
  • [2] Viscosity solutions of nonlinear integro-differential equations
    Alvarez, O
    Tourin, A
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (03): : 293 - 317
  • [3] Viscosity solutions of nonlinear integro-differential equations
    Alvarez, O.
    Tourin, A.
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 1996, 13 (03): : 293 - 317
  • [4] ESTIMATION OF SOLUTIONS OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS
    RUCHINSKII, VS
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1975, (06): : 91 - 98
  • [5] HYPERPOLYNOMIAL APPROXIMATION OF SOLUTIONS OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS
    KARTSATOS, AG
    SAFF, EB
    PACIFIC JOURNAL OF MATHEMATICS, 1973, 49 (01) : 117 - 125
  • [6] Existence of solutions for nonlinear fractional integro-differential equations
    Ahmed Bragdi
    Assia Frioui
    Assia Guezane Lakoud
    Advances in Difference Equations, 2020
  • [7] Existence of solutions for nonlinear fractional integro-differential equations
    Bragdi, Ahmed
    Frioui, Assia
    Lakoud, Assia Guezane
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [8] EXTENDED SOLUTIONS OF A SYSTEM OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS
    Le, U. V.
    Nguyen, L. T. T.
    Pascali, E.
    Sanatpour, A. H.
    MATEMATICHE, 2009, 64 (02): : 3 - 16
  • [9] PERIODIC-SOLUTIONS OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS
    NURZHANOV, OD
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1977, (07): : 595 - 598
  • [10] Nonlinear Integro-Differential Equations
    Mahdavi, S.
    Kajani, M. Tavassoli
    JOURNAL OF MATHEMATICAL EXTENSION, 2010, 4 (02) : 107 - 117