Affine Hecke algebras and raising operators for Macdonald polynomials

被引:39
作者
Kirillov, AN
Noumi, M
机构
[1] Univ Tokyo, Dept Math Sci, Tokyo 153, Japan
[2] Kobe Univ, Fac Sci, Dept Math, Kobe, Hyogo 657, Japan
关键词
D O I
10.1215/S0012-7094-98-09301-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1 / 39
页数:39
相关论文
共 17 条
[1]   DOUBLE AFFINE HECKE ALGEBRAS AND MACDONALDS CONJECTURES [J].
CHEREDNIK, I .
ANNALS OF MATHEMATICS, 1995, 141 (01) :191-216
[2]  
DATE E, 1988, ADV STUD PURE MATH, V16, P17
[3]   A GRADED REPRESENTATION MODEL FOR MACDONALDS POLYNOMIALS [J].
GARSIA, AM ;
HAIMAN, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (08) :3607-3610
[4]   Plethystic formulas for Macdonald q,t-Kostka coefficients [J].
Garsia, AM ;
Tesler, G .
ADVANCES IN MATHEMATICS, 1996, 123 (02) :144-222
[5]   Lectures on affine Hecke algebras and Macdonald's conjectures [J].
Kirillov, AA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 34 (03) :251-292
[6]  
KIRILLOV AN, 1995, PROG THEOR PHYS SUPP, P61, DOI 10.1143/PTPS.118.61
[7]  
KIRILLOV AN, 1996, UTMS9625
[8]  
Knop F, 1997, J REINE ANGEW MATH, V482, P177
[9]   Exact operator solution of the Calogero-Sutherland model [J].
Lapointe, L ;
Vinet, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 178 (02) :425-452
[10]  
LAPOINTE L, 1995, IMRN INT MATH RES NO, P419