In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks

被引:318
作者
Milano, Gianluca [1 ]
Pedretti, Giacomo [2 ,3 ]
Montano, Kevin [4 ]
Ricci, Saverio [2 ,3 ]
Hashemkhani, Shahin [2 ,3 ]
Boarino, Luca [1 ]
Ielmini, Daniele [2 ,3 ]
Ricciardi, Carlo [4 ]
机构
[1] Ist Nazl Ric Metrol, Adv Mat Metrol & Life Sci Div, Turin, Italy
[2] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Milan, Italy
[3] IU NET, Milan, Italy
[4] Politecn Torino, Dept Appl Sci & Technol, Turin, Italy
基金
欧盟地平线“2020”;
关键词
Compendex;
D O I
10.1038/s41563-021-01099-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Neuromorphic computing aims at the realization of intelligent systems able to process information similarly to our brain. Brain-inspired computing paradigms have been implemented in crossbar arrays of memristive devices; however, this approach does not emulate the topology and the emergent behaviour of biological neuronal circuits, where the principle of self-organization regulates both structure and function. Here, we report on in materia reservoir computing in a fully memristive architecture based on self-organized nanowire networks. Thanks to the functional synaptic connectivity with nonlinear dynamics and fading memory properties, the designless nanowire complex network acts as a network-wide physical reservoir able to map spatio-temporal inputs into a feature space that can be analysed by a memristive resistive switching memory read-out layer. Computing capabilities, including recognition of spatio-temporal patterns and time-series prediction, show that the emergent memristive behaviour of nanowire networks allows in materia implementation of brain-inspired computing paradigms characterized by a reduced training cost. A network of self-organized nanowires combined with a memristive read-out layer is used to demonstrate a hardware implementation of reservoir computing for recognition of spatio-temporal patterns and time-series prediction.
引用
收藏
页码:195 / +
页数:10
相关论文
共 50 条
[41]   A molecular neuromorphic network device consisting of single-walled carbon nanotubes complexed with polyoxometalate [J].
Tanaka, Hirofumi ;
Akai-Kasaya, Megumi ;
TermehYousefi, Amin ;
Hong, Liu ;
Fu, Lingxiang ;
Tamukoh, Hakaru ;
Tanaka, Daisuke ;
Asai, Tetsuya ;
Ogawa, Takuji .
NATURE COMMUNICATIONS, 2018, 9
[42]   Neuromorphic computing with nanoscale spintronic oscillators [J].
Torrejon, Jacob ;
Riou, Mathieu ;
Araujo, Flavio Abreu ;
Tsunegi, Sumito ;
Khalsa, Guru ;
Querlioz, Damien ;
Bortolotti, Paolo ;
Cros, Vincent ;
Yakushiji, Kay ;
Fukushima, Akio ;
Kubota, Hitoshi ;
Uasa, Shinji Y. ;
Stiles, Mark D. ;
Grollier, Julie .
NATURE, 2017, 547 (7664) :428-+
[43]   Advances in photonic reservoir computing [J].
Van der Sande, Guy ;
Brunner, Daniel ;
Soriano, Miguel C. .
NANOPHOTONICS, 2017, 6 (03) :561-576
[44]   Experimental demonstration of reservoir computing on a silicon photonics chip [J].
Vandoorne, Kristof ;
Mechet, Pauline ;
Van Vaerenbergh, Thomas ;
Fiers, Martin ;
Morthier, Geert ;
Verstraeten, David ;
Schrauwen, Benjamin ;
Dambre, Joni ;
Bienstman, Peter .
NATURE COMMUNICATIONS, 2014, 5
[45]   Resistive switching materials for information processing [J].
Wang, Zhongrui ;
Wu, Huaqiang ;
Burr, Geoffrey W. ;
Hwang, Cheol Seong ;
Wang, Kang L. ;
Xia, Qiangfei ;
Yang, J. Joshua .
NATURE REVIEWS MATERIALS, 2020, 5 (03) :173-195
[46]  
Wang ZR, 2017, NAT MATER, V16, P101, DOI [10.1038/NMAT4756, 10.1038/nmat4756]
[47]   Memristive crossbar arrays for brain-inspired computing [J].
Xia, Qiangfei ;
Yang, J. Joshua .
NATURE MATERIALS, 2019, 18 (04) :309-323
[48]   Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing [J].
Zhong, Yanan ;
Tang, Jianshi ;
Li, Xinyi ;
Gao, Bin ;
Qian, He ;
Wu, Huaqiang .
NATURE COMMUNICATIONS, 2021, 12 (01)
[49]   Information dynamics in neuromorphic nanowire networks [J].
Zhu, Ruomin ;
Hochstetter, Joel ;
Loeffler, Alon ;
Diaz-Alvarez, Adrian ;
Nakayama, Tomonobu ;
Lizier, Joseph T. ;
Kuncic, Zdenka .
SCIENTIFIC REPORTS, 2021, 11 (01)
[50]   Memristor networks for real-time neural activity analysis [J].
Zhu, Xiaojian ;
Wang, Qiwen ;
Lu, Wei D. .
NATURE COMMUNICATIONS, 2020, 11 (01)