In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks

被引:270
作者
Milano, Gianluca [1 ]
Pedretti, Giacomo [2 ,3 ]
Montano, Kevin [4 ]
Ricci, Saverio [2 ,3 ]
Hashemkhani, Shahin [2 ,3 ]
Boarino, Luca [1 ]
Ielmini, Daniele [2 ,3 ]
Ricciardi, Carlo [4 ]
机构
[1] Ist Nazl Ric Metrol, Adv Mat Metrol & Life Sci Div, Turin, Italy
[2] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Milan, Italy
[3] IU NET, Milan, Italy
[4] Politecn Torino, Dept Appl Sci & Technol, Turin, Italy
基金
欧盟地平线“2020”;
关键词
Compendex;
D O I
10.1038/s41563-021-01099-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Neuromorphic computing aims at the realization of intelligent systems able to process information similarly to our brain. Brain-inspired computing paradigms have been implemented in crossbar arrays of memristive devices; however, this approach does not emulate the topology and the emergent behaviour of biological neuronal circuits, where the principle of self-organization regulates both structure and function. Here, we report on in materia reservoir computing in a fully memristive architecture based on self-organized nanowire networks. Thanks to the functional synaptic connectivity with nonlinear dynamics and fading memory properties, the designless nanowire complex network acts as a network-wide physical reservoir able to map spatio-temporal inputs into a feature space that can be analysed by a memristive resistive switching memory read-out layer. Computing capabilities, including recognition of spatio-temporal patterns and time-series prediction, show that the emergent memristive behaviour of nanowire networks allows in materia implementation of brain-inspired computing paradigms characterized by a reduced training cost. A network of self-organized nanowires combined with a memristive read-out layer is used to demonstrate a hardware implementation of reservoir computing for recognition of spatio-temporal patterns and time-series prediction.
引用
收藏
页码:195 / +
页数:10
相关论文
共 50 条
[1]   A Roadmap for Reaching the Potential of Brain-Derived Computing [J].
Aimone, James B. .
ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (01)
[2]  
[Anonymous], 2013, Principles of Neural Science
[3]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[4]  
Bose SK, 2015, NAT NANOTECHNOL, V10, P1048, DOI [10.1038/NNANO.2015.207, 10.1038/nnano.2015.207]
[5]  
Bürger J, 2013, PROCEEDINGS OF THE 2013 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH), P1, DOI 10.1109/NanoArch.2013.6623028
[6]   Nanoarchitectonic atomic switch networks for unconventional computing [J].
Demis, Eleanor C. ;
Aguilera, Renato ;
Scharnhorst, Kelsey ;
Aono, Masakazu ;
Stieg, Adam Z. ;
Gimzewski, James K. .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (11)
[7]   Emergent dynamics of neuromorphic nanowire networks [J].
Diaz-Alvarez, Adrian ;
Higuchi, Rintaro ;
Sanz-Leon, Paula ;
Marcus, Ido ;
Shingaya, Yoshitaka ;
Stieg, Adam Z. ;
Gimzewski, James K. ;
Kuncic, Zdenka ;
Nakayama, Tomonobu .
SCIENTIFIC REPORTS, 2019, 9 (1)
[8]   Reservoir computing using dynamic memristors for temporal information processing [J].
Du, Chao ;
Cai, Fuxi ;
Zidan, Mohammed A. ;
Ma, Wen ;
Lee, Seung Hwan ;
Lu, Wei D. .
NATURE COMMUNICATIONS, 2017, 8
[9]  
Fornito A., 2016, FUNDAMENTALS BRAIN N, P1, DOI [10.1016/B978-0-12-407908-3.00001-7, DOI 10.1016/B978-0-12-407908-3.00001-7]
[10]   Promoting Geography for Sustainability [J].
Fu, Bojie .
GEOGRAPHY AND SUSTAINABILITY, 2020, 1 (01) :1-7