Pervasive Transcription of Mitochondrial, Plastid, and Nucleomorph Genomes across Diverse Plastid-Bearing Species

被引:24
作者
Lima, Matheus Sanita [1 ]
Smith, David Roy [1 ]
机构
[1] Univ Western Ontario, Dept Biol, London, ON, Canada
来源
GENOME BIOLOGY AND EVOLUTION | 2017年 / 9卷 / 10期
基金
加拿大自然科学与工程研究理事会;
关键词
mitochondrial transcription; noncoding RNA; organelle gene expression; pervasive transcription; plastid transcription; LONG NONCODING RNAS; EUKARYOTIC GENOME; EVOLUTION; CHLOROPLASTS; EXPRESSION; NOISE; GENE; ORGANIZATION; SYMBIODINIUM; CHROMOSOMES;
D O I
10.1093/gbe/evx207
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Organelle genomes exhibit remarkable diversity in content, structure, and size, and in their modes of gene expression, which are governed by both organelle- and nuclear-encoded machinery. Next generation sequencing (NGS) has generated unprecedented amounts of genomic and transcriptomic data, which can be used to investigate organelle genome transcription. However, most of the available eukaryotic RNA-sequencing (RNA-seq) data are used to study nuclear transcription only, even though large numbers of organelle-derived reads can typically be mined from these experiments. Here, we use publicly available RNA-seq data to assess organelle genome transcription in 59 diverse plastid-bearing species. Our RNA mapping analyses unraveled pervasive (full or near-full) transcription of mitochondrial, plastid, and nucleomorph genomes. In all cases, 85% or more of the organelle genome was recovered from the RNA data, including noncoding (intergenic and intronic) regions. These results reinforce the idea that organelles transcribe all or nearly all of their genomic material and are dependent on post-transcriptional processing of polycistronic transcripts. We explore the possibility that transcribed intergenic regions are producing functional noncoding RNAs, and that organelle genome noncoding content might provide raw material for generating regulatory RNAs.
引用
收藏
页码:2650 / 2657
页数:8
相关论文
共 75 条
  • [1] The eukaryotic genome as an RNA machine
    Amaral, Paulo P.
    Dinger, Marcel E.
    Mercer, Tim R.
    Mattick, John S.
    [J]. SCIENCE, 2008, 319 (5871) : 1787 - 1789
  • [2] Transcription regulates telomere dynamics in human cancer cells
    Arora, Rajika
    Brun, Catherine M.
    Azzalin, Claus M.
    [J]. RNA, 2012, 18 (04) : 684 - 693
  • [3] Nuclear Outsourcing of RNA Interference Components to Human Mitochondria
    Bandiera, Simonetta
    Rueberg, Silvia
    Girard, Muriel
    Cagnard, Nicolas
    Hanein, Sylvain
    Chretien, Dominique
    Munnich, Arnold
    Lyonnet, Stanislas
    Henrion-Caude, Alexandra
    [J]. PLOS ONE, 2011, 6 (06):
  • [4] Organization and expression of organellar genomes
    Barbrook, Adrian C.
    Howe, Christopher J.
    Kurniawan, Davy P.
    Tarr, Sarah J.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2010, 365 (1541) : 785 - 797
  • [5] The size and form of chromosomes are constant in the nucleus, but highly variable in bacteria, mitochondria and chloroplasts
    Bendich, Arnold J.
    [J]. BIOESSAYS, 2007, 29 (05) : 474 - 483
  • [6] Pervasive transcription constitutes a new level of eukaryotic genome regulation
    Berretta, Julia
    Morillon, Antonin
    [J]. EMBO REPORTS, 2009, 10 (09) : 973 - 982
  • [7] Mitochondrial genomes: anything goes
    Burger, G
    Gray, MW
    Lang, BF
    [J]. TRENDS IN GENETICS, 2003, 19 (12) : 709 - 716
  • [8] The Eukaryotic Tree of Life from a Global Phylogenomic Perspective
    Burki, Fabien
    [J]. COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2014, 6 (05):
  • [9] Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses
    Cabili, Moran N.
    Trapnell, Cole
    Goff, Loyal
    Koziol, Magdalena
    Tazon-Vega, Barbara
    Regev, Aviv
    Rinn, John L.
    [J]. GENES & DEVELOPMENT, 2011, 25 (18) : 1915 - 1927
  • [10] RNA Editing in Plant Organelles. Why Make It Easy?
    Castandet, B.
    Araya, A.
    [J]. BIOCHEMISTRY-MOSCOW, 2011, 76 (08) : 924 - 931