Dispersive kinetics in discotic liquid crystals

被引:2
|
作者
Kruglova, O. [1 ]
Mulder, F. M. [2 ]
Kearley, G. J. [3 ]
Picken, S. J. [4 ]
Stride, J. A. [5 ,6 ]
Paraschiv, I. [7 ]
Zuilhof, H. [7 ]
机构
[1] Univ Mons, Lab Interfaces & Fluides Complexes, Ctr Innovat & Rech Mat Polymeres, B-7000 Mons, Belgium
[2] Delft Univ Technol, Fac Sci Appl, Dept Radiat Radionuclides & Reactors, NL-2629 JB Delft, Netherlands
[3] Australian Nucl Sci & Technol Org, Bragg Inst, Menai, NSW 2234, Australia
[4] Dept Mat Sci & Technol, NL-2628 BL Delft, Netherlands
[5] Inst Laue Langevin, F-38042 Grenoble 09, France
[6] Univ New S Wales, Sch Chem, Sydney, NSW 2052, Australia
[7] Organ Chem Lab, NL-6703 HB Wageningen, Netherlands
来源
PHYSICAL REVIEW E | 2010年 / 82卷 / 05期
关键词
ANOMALOUS DIFFUSION; DYNAMICS; COLUMNAR; STATISTICS; POLYMERS; STATE;
D O I
10.1103/PhysRevE.82.051703
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dynamics of the discotic liquid-crystalline system, hexakis (n-hexyloxy) triphenylene (HAT6), is considered in the frame of the phenomenological model for rate processes proposed by Berlin. It describes the evolution of the system in the presence of the long-time scale correlations in the system, and we compare this with experimental quasielastic neutron scattering of the molecular assembly of HAT6 in the columnar phase. We interpret the parameters of this model in terms of nonextensive thermodynamics in which rare events in the local fast dynamics of some parts of the system control the slower dynamics of the larger molecular entity and lead to a fractional diffusion equation. The importance of these rare local events to the overall dynamics of the system is linked to the entropic index, this being obtained from the data within the model approach. Analysis of the waiting-time dependence from momentum transfer reveals a Levy distribution of jump lengths, which allows us to construct the van Hove correlation function for discotic liquid-crystalline system.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Oriented polymer dispersed discotic liquid crystals
    Chénard, Y
    Paiement, N
    Zhao, Y
    LIQUID CRYSTALS, 2000, 27 (04) : 459 - 465
  • [42] Molecular engineering of discotic nematic liquid crystals
    Kumar, S
    PRAMANA-JOURNAL OF PHYSICS, 2003, 61 (02): : 199 - 203
  • [43] STABILITY OF FILAMENTS OF DISCOTIC LIQUID-CRYSTALS
    KAMENSKII, VG
    KATS, EI
    JETP LETTERS, 1983, 37 (05) : 261 - 264
  • [44] Functionalisation of triphenylene based discotic liquid crystals
    Boden, N
    Bushby, RJ
    Cammidge, AN
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1995, 260 (pt 1): : 307 - &
  • [45] DISCOTIC LIQUID-CRYSTALS - A BRIEF REVIEW
    CHANDRASEKHAR, S
    LIQUID CRYSTALS, 1993, 14 (01) : 3 - 14
  • [46] Enhanced charge conduction in discotic liquid crystals
    Bushby, RJ
    Evans, SD
    Lozman, OR
    McNeill, A
    Movaghar, B
    JOURNAL OF MATERIALS CHEMISTRY, 2001, 11 (08) : 1982 - 1984
  • [47] Chiral discotic columnar phases in liquid crystals
    Yan, G
    Lubensky, TC
    JOURNAL DE PHYSIQUE II, 1997, 7 (07): : 1023 - 1034
  • [48] Thin films of discotic liquid crystals and their applications
    Gupta, R. K.
    Manjuladevi, V.
    Karthik, C.
    Choudhary, Keerti
    LIQUID CRYSTALS, 2016, 43 (13-15) : 2079 - 2091
  • [49] A case for discotic liquid crystals in molten triglycerides
    Corkery, Robert W.
    Rousseau, Derick
    Smith, Paul
    Pink, David A.
    Hanna, Charles B.
    LANGMUIR, 2007, 23 (13) : 7241 - 7246
  • [50] Anthraquinone-Based Discotic Liquid Crystals
    Murschell, Amy E.
    Sutherland, Todd C.
    LANGMUIR, 2010, 26 (15) : 12859 - 12866