共 40 条
Nucleolar integrity during interphase supports faithful Cdk1 activation and mitotic entry
被引:14
作者:
Hayashi, Yuki
[1
,2
]
Fujimura, Akiko
[1
,4
]
Kato, Kazashi
[1
]
Udagawa, Rina
[1
]
Hirota, Toru
[3
]
Kimura, Keiji
[1
,2
]
机构:
[1] Univ Tsukuba, Grad Sch Life & Environm Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577, Japan
[2] Univ Tsukuba, Tsukuba Adv Res Alliance, Life Sci Ctr Survival Dynam, Tsukuba, Ibaraki 3058577, Japan
[3] Japanese Fdn Canc Res, Canc Inst, Div Expt Pathol, Koto Ku, 3-8-1 Ariake, Tokyo 1358550, Japan
[4] Univ Tokyo, Grad Sch Pharmaceut Sci, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan
关键词:
CELL-CYCLE REGULATION;
RIBOSOMAL-RNA;
MAMMALIAN-CELLS;
DNA-DAMAGE;
WEE1;
TRANSCRIPTION;
MITOSIS;
INACTIVATION;
P53;
PHOSPHORYLATION;
D O I:
10.1126/sciadv.aap7777
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The nucleolus is a dynamic nuclear body that has been demonstrated to disassemble at the onset of mitosis; the relationship between cell cycle progression and nucleolar integrity, however, remains poorly understood. We studied the role of nucleolar proteins in mitosis by performing a global analysis using small interfering RNAs specific to nucleolar proteins; we focused on nucleolar protein 11 (NOL11), with currently unknown mitotic functions. Depletion of NOL11 delayed entry into the mitotic phase owing to increased inhibitory phosphorylation of cyclin-dependent kinase 1 (Cdk1) and aberrant accumulation of Wee1, a kinase that phosphorylates and inhibits Cdk1. In addition to effects on overall mitotic phenotypes, NOL11 depletion reduced ribosomal RNA (rRNA) levels and caused nucleolar disruption during interphase. Notably, mitotic phenotypes found in NOL11-depleted cells were recapitulated when nucleolar disruption was induced by depletion of rRNA transcription factors or treatment with actinomycin D. Furthermore, delayed entry into the mitotic phase, caused by the depletion of pre-rRNA transcription factors, was attributable to nucleolar disruption rather than to G(2)/M checkpoint activation or reduced protein synthesis. Our findings therefore suggest that maintenance of nucleolar integrity during interphase is essential for proper cell cycle progression to mitosis via the regulation of Wee1 and Cdk1.
引用
收藏
页数:11
相关论文