Eigenfrequency determination for arbitrary cross-section waveguides

被引:0
作者
Raciti, F [1 ]
Venturino, E
机构
[1] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy
[2] Catania Univ, Dipartimento Matemat, Catania, Italy
[3] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
Eigenvalue problem; Helmholtz equation; quantum billiards; waveguides; symbolic manipulators;
D O I
10.1016/S0898-1221(00)00276-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we outline the construction of Maple routines for the solution of the Helmholtz equation del (2)psi + k(2)psi = 0 with Dirichlet boundary conditions in two-dimensional domains. By means of the symbolic manipulator, we are able to perform a numerical study of the eigenvalues for quantum billiards. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:319 / 326
页数:8
相关论文
共 6 条
[1]   DIABOLICAL POINTS IN THE SPECTRA OF TRIANGLES [J].
BERRY, MV ;
WILKINSON, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1984, 392 (1802) :15-43
[2]  
BLACHMAN NR, 1994, MAPLE 5 QUICK REFERE
[3]   Eigenvalues and eigenfunctions of billiards in a constant magnetic field [J].
deAguiar, MAM .
PHYSICAL REVIEW E, 1996, 53 (05) :4555-4561
[4]  
HASEGAWA H, 1989, PROG THEOR PHYS SUPP, P198, DOI 10.1143/PTPS.98.198
[5]   Bilinear optimal control for a wave equation [J].
Liang, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (01) :45-68
[6]   Control of quantum systems [J].
Pérez, RB ;
Protopopescu, V ;
Muñoz-Cobo, JL .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (02) :305-324