Approximating the selected-internal Steiner tree

被引:10
作者
Hsieh, Sun-Yuan [1 ]
Yang, Shih-Cheng [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 70101, Taiwan
关键词
design and analysis of algorithms; approximation algorithms; steiner tree; the selected-internal steiner tree problem; MAX SNP-hard;
D O I
10.1016/j.tcs.2007.05.035
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we consider a variant of the well-known Steiner tree problem. Given a complete graph G = (V, E) with a cost function c : E -> R+ and two subsets R and R' satisfying R' subset of R subset of V, a selected-internal Steiner tree is a Steiner tree which contains (or spans) all the vertices in R such that each vertex in R' cannot be a leaf. The selected-internal Steiner tree problem is to find a selected-internal Steiner tree with the minimum cost. In this paper, we present a 2 rho-approximation algorithm for the problem, where p is the best-known approximation ratio for the Steiner tree problem. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:288 / 291
页数:4
相关论文
共 14 条
[1]   Proof verification and the hardness of approximation problems [J].
Arora, S ;
Lund, C ;
Motwani, R ;
Sudan, M ;
Szegedy, M .
JOURNAL OF THE ACM, 1998, 45 (03) :501-555
[2]   FASTER EXACT ALGORITHMS FOR STEINER TREES IN PLANAR NETWORKS [J].
BERN, M .
NETWORKS, 1990, 20 (01) :109-120
[3]   The k-Steiner ratio in graphs [J].
Borchers, A ;
Du, DZ .
SIAM JOURNAL ON COMPUTING, 1997, 26 (03) :857-869
[4]  
Cheng X., 2001, STEINER TREES IND
[5]  
Du D.Z., 2000, ADV STEINER TREE
[6]   ON COMPONENT-SIZE BOUNDED STEINER TREES [J].
DU, DZ .
DISCRETE APPLIED MATHEMATICS, 1995, 60 (1-3) :131-140
[7]  
Foulds L.R., 1982, ADV APPL MATH, V3, P43, DOI DOI 10.1016/S0196-8858(82)80004-3
[8]   COMPLEXITY OF COMPUTING STEINER MINIMAL TREES [J].
GAREY, MR ;
GRAHAM, RL ;
JOHNSON, DS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) :835-859
[9]   RECTILINEAR STEINER TREE PROBLEM IS NP-COMPLETE [J].
GAREY, MR ;
JOHNSON, DS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) :826-834
[10]  
GRAUR D, 2000, FUNDAMENTALS MOL EVO