Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data

被引:74
作者
Cecchi, Lorenzo [2 ]
Gabbrielli, Roberto [2 ]
Arnetoli, Miluscia [2 ]
Gonnelli, Cristina [2 ]
Hasko, Agim [3 ]
Selvi, Federico [1 ]
机构
[1] Univ Florence, Dept Agr Biotechnol, Sect Bot, I-50144 Florence, Italy
[2] Univ Florence, Dept Evolutionary Biol, I-50121 Florence, Italy
[3] Agr Univ Tirana, Dept Agron, Kamez Koder, Tirana, Albania
关键词
Alysseae; Alyssum sect; Odontarrhena; Bornmuellera; Brassicaceae; Leptoplax; molecular phylogeny; Ni hyperaccumulation; METAL HYPERACCUMULATION; PHYLOGENETIC-RELATIONSHIPS; THLASPI-CAERULESCENS; SERPENTINE SOILS; PLANTS; ACCUMULATION; GENERA; FLORA; ZINC; BORNMUELLERA;
D O I
10.1093/aob/mcq162
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Nickel (Ni) hyperaccumulation is a rare form of physiological specialization shared by a small number of angiosperms growing on ultramafic soils. The evolutionary patterns of this feature among European members of tribe Alysseae (Brassicaceae) are investigated using a phylogenetic approach to assess relationships among Ni hyperaccumulators at the genus, species and below-species level. Internal transcribed spacer (ITS) sequences were generated for multiple accessions of Alysseae. Phylogenetic trees were obtained for the genera of the tribe and Alyssum sect. Odontarrhena. All accessions and additional herbarium material were tested for Ni hyperaccumulation with the dimethylglyoxime colorimetric method. Molecular data strongly support the poorly known hyperaccumulator endemic Leptoplax (Peltaria) emarginata as sister to hyperaccumulator species of Bornmuellera within Alysseae. This is contrary to current assumptions of affinity between L. emarginata and the non-hyperaccumulator Peltaria in Thlaspideae. The lineage Bornmuellera-Leptoplax is, in turn, sister to the two non-hyperaccumulator Mediterranean endemics Ptilotrichum rupestre and P. cyclocarpum. Low ITS sequence variation was found within the monophyletic Alyssum sect. Odontarrhena and especially in A. murale sensu lato. Nickel hyperaccumulation was not monophyletic in any of three main clades retrieved, each consisting of hyperaccumulators and non-hyperaccumulators of different geographical origin. Nickel hyperaccumulation in Alysseae has a double origin, but it did not evolve in Thlaspideae. In Bornmuellera-Leptoplax it represents an early synapomorphy inherited from an ancestor shared with the calcicolous, sister clade of Mediterranean Ptilotrichum. In Alyssum sect. Odontarrhena it has multiple origins even within the three European clades recognized. Lack of geographical cohesion suggests that accumulation ability has been lost or gained over the different serpentine areas of south Europe through independent events of microevolutionary adaptation and selection. Genetic continuity and strong phenotypic plasticity in the A. murale complex call for a reduction of the number of Ni hyperaccumulator taxa formally recognized.
引用
收藏
页码:751 / 767
页数:17
相关论文
共 102 条
[1]  
ADIGU ZELN, 2002, Turkey Edinburgh J B, V59, P215
[2]   Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview [J].
Al-Shehbaz, I. A. ;
Beilstein, M. A. ;
Kellogg, E. A. .
PLANT SYSTEMATICS AND EVOLUTION, 2006, 259 (2-4) :89-120
[3]  
[Anonymous], FLORA HELLENICA
[4]  
[Anonymous], ATLAS FLORAE EUROPEA
[5]  
[Anonymous], MOUNTAIN FLORA GREEC
[6]  
APPEL OAL, 2003, Springer, P75
[7]   Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants [J].
Assunçao, AGL ;
Schat, H ;
Aarts, MGM .
NEW PHYTOLOGIST, 2003, 159 (02) :351-360
[8]   Toward a global phylogeny of the Brassicaceae [J].
Bailey, C. Donovan ;
Koch, Marcus A. ;
Mayer, Michael ;
Mummenhoff, Klaus ;
O'Kane, Steve L., Jr. ;
Warwick, Suzanne I. ;
Windham, Michael D. ;
Al-Shehbaz, Ihsan A. .
MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (11) :2142-2160
[9]  
Ball P. W., 1993, FLORA EUROPAEA, P359
[10]  
Ball P.W., 1993, FLORA EUROPAEA, V1, P358