Parallel Inclusive Communication for Connecting Heterogeneous IoT Devices at the Edge

被引:13
作者
Chi, Zicheng [1 ]
Li, Yan [1 ]
Liu, Xin [1 ]
Yao, Yao [1 ]
Zhang, Yanchao [2 ]
Zhu, Ting [1 ]
机构
[1] Univ Maryland Baltimore Cty, Comp Sci & Elect Engn, Baltimore, MD 21228 USA
[2] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
来源
PROCEEDINGS OF THE 17TH CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS (SENSYS '19) | 2019年
关键词
IoT; Heterogenous Networks; Parallel Communication; WIRELESS; INTERFERENCE; COEXISTENCE; MODEL;
D O I
10.1145/3356250.3360046
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
WiFi and Bluetooth Low Energy (BLE) are widely used in Internet of Things (IoT) devices. Since WiFi and BLE work within the overlapped ISM 2.4 GHz band, they will interfere with each other. Existing approaches have demonstrated their effectiveness in mitigating the interference. However, further performance improvement has been hampered by the design goal of exclusive communication of WiFi or BLE, which only allows one WiFi or BLE device to transmit packets at any specific time slot on the overlapped channel within the communication range. In this paper, we explore a new communication method, called Parallel Inclusive Communication (PIC), which leverages the unique modulation schemes of WiFi and BLE for parallel inclusive bi-directional transmission of both WiFi and BLE data at the same time within the overlapped channel. In this communication system, the PIC gateway is designed upon the IEEE 802.11g and 802.15.1 frameworks while the WiFi and BLE clients are commercial off-the-shelf devices. PIC achieves similar data rates for these parallel WiFi and BLE communications as if WiFi and BLE are communicating separately. PIC's system architecture naturally fits at the edge of the Internet, which is an optimal site for concurrently collecting (or disseminating) data from (or to) an exponentially increasing number of IoT devices that are using WiFi or BLE. We conducted extensive evaluations under four real-world scenarios. Results show that compared with existing approaches, PIC can significantly i) increase the packet reception ratios by 183%; ii) reduce the round-trip delay time by 590 times and energy consumption by 50.5 times; and iii) improve the throughput under WiFi and BLE coexistence scenarios.
引用
收藏
页码:205 / 218
页数:14
相关论文
共 57 条
[1]  
a Khojastepour M., 2011, Proc. 10th ACM Work. Hot Top. Networks - HotNets '11, P1, DOI [10.1145/2070562.2070579, DOI 10.1145/2070562.2070579]
[2]   SiAc: simultaneous activation of heterogeneous radios in high data rate multi-hop wireless networks [J].
Al Islam, A. B. M. Alim ;
Raghunathan, Vijay .
WIRELESS NETWORKS, 2015, 21 (07) :2425-2452
[3]  
[Anonymous], 2005, IEEE Standard 802.15.1.
[4]  
[Anonymous], 2016, LOW CAN YOU GO REDUC
[5]  
[Anonymous], 2019, CISCO VISUAL NETWORK
[6]  
Aryafar E, 2012, MOBICOM 12: PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND NETWORKING, P257
[7]   The Hare and the Tortoise: Taming Wireless Losses by Exploiting Wired Reliability [J].
Badam, Anirudh ;
Han, Dongsu ;
Andersen, David G. ;
Kaminsky, Michael ;
Papagiannaki, Konstantina ;
Seshan, Srinivasan .
PROCEEDINGS OF THE TWELFTH ACM INTERNATIONAL SYMPOSIUM ON MOBILE AD HOC NETWORKING AND COMPUTING (MOBIHOC' 11), 2011,
[8]   Full Duplex Radios [J].
Bharadia, Dinesh ;
McMilin, Emily ;
Katti, Sachin .
ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2013, 43 (04) :375-386
[9]  
Chebrolu K, 2009, FIFTEENTH ACM INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND NETWORKING (MOBICOM 2009), P85
[10]  
Chi Z., 2017, 2017 IEEE 25 INT C N, P1, DOI [10.1109/ICNP.2017.8117550, DOI 10.1109/ICNP.2017.8117550]