Magnetohydrodynamic Control of Interfacial Degradation in Lithium-Ion Batteries for Fast Charging Applications

被引:15
|
作者
Sarkar, Abhishek [1 ]
Shrotriya, Pranav [2 ]
Nlebedim, Ikenna C. [1 ]
机构
[1] US DOE, Ames Lab, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
关键词
magneto-electrochemical; electromagnetism; magnetohydrodynamic force; fast charging; film deposition; lithium-ion battery; SOLID-ELECTROLYTE INTERPHASE; IN-SITU DETECTION; GRAPHITE-ELECTRODES; HIGH-PRECISION; BEHAVIOR; SALTS; XPS;
D O I
10.1021/acsami.1c10788
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Interfacial anodic degradation in graphitic materials under fast charging conditions causes severe performance loss and safety hazard in lithium ion batteries. We present a novel method for minimizing the growth of these aging mechanism by application of an external magnetic field. Under magnetic field, paramagnetic lithium ions experience a magnetohydrodynamic force, which rotates the perpendicularly diffusing species and homogenizes the ionic transport. This phenomenon minimizes the overpotential hotspots at the anode/separator interface, consequently reducing SEI growth, lithium plating, and interfacial fracture. In situ electrochemical measurements indicate an improvement in capacity for lithium cobalt oxide/graphite pouch cell (20 mAh) charged from 1-5 C under an applied field of 1.8 kG, with a maximum capacity gain of 22% at 5C. Postmortem FE-SEM and EDS mapping shows that samples charged with magnetic field have a reduced lithium deposition at 3C and a complete suppression of interfacial fracture at 5C. At 5C, a 24% reduction in the lithium content is observed by performing XPS on the anodic interfacial film. Finally, fast charging performance under variable magnetic field strengths indicate a saturation behavior in capacity at high fields (>2 kG), thereby limiting the field and consequent energy requirements to obtain maximum capacity gain under extreme conditions.
引用
收藏
页码:43606 / 43614
页数:9
相关论文
共 50 条
  • [1] Optimal Fast Charging Control for Lithium-ion Batteries
    Ouyang, Quan
    Ma, Rui
    Wu, Zhaoxiang
    Wang, Zhisheng
    IFAC PAPERSONLINE, 2020, 53 (02): : 12435 - 12439
  • [2] Effect of Fast Charging on Lithium-Ion Batteries: A Review
    Abd El Halim, Ahmed Abd El Baset
    Bayoumi, Ehab Hassan Eid
    El-Khattam, Walid
    Ibrahim, Amr Mohamed
    SAE INTERNATIONAL JOURNAL OF ELECTRIFIED VEHICLES, 2023, 12 (03): : 361 - 388
  • [3] Fast charging of lithium-ion batteries at all temperatures
    Yang, Xiao-Guang
    Zhang, Guangsheng
    Ge, Shanhai
    Wang, Chao-Yang
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (28) : 7266 - 7271
  • [4] Advanced Integrated Fast-Charging Protocol for Lithium-Ion Batteries by Considering Degradation
    Kim, Minsu
    Kim, Junghwan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (17) : 6786 - 6796
  • [5] Multimodal quantification of degradation pathways during extreme fast charging of lithium-ion batteries
    McShane, Eric J.
    Paul, Partha P.
    Tanim, Tanvir R.
    Cao, Chuntian
    Steinruck, Hans-Georg
    Thampy, Vivek
    Trask, Stephen E.
    Dunlop, Alison R.
    Jansen, Andrew N.
    Dufek, Eric J.
    Toney, Michael F.
    Weker, Johanna Nelson
    McCloskey, Bryan D.
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (44) : 23927 - 23939
  • [6] Fast Charging Control for Lithium-ion Batteries Based on Deep Reinforcement Learning
    Tang X.
    Ouyang Q.
    Huang L.
    Wang Z.
    Ma R.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2022, 58 (22): : 69 - 78
  • [7] Extreme fast charging algorithm for lithium-ion batteries with precision lithium plating regulation for degradation reduction
    Zhu, Y.
    O'Boyle, K.
    Plateau, T.
    Kimball, J.
    Landers, R.
    Park, J.
    ENERGY, 2025, 322
  • [8] Fast Charging of Lithium-Ion Batteries: A Review of Materials Aspects
    Weiss, Manuel
    Ruess, Raffael
    Kasnatscheew, Johannes
    Levartovsky, Yehonatan
    Levy, Natasha Ronith
    Minnmann, Philip
    Stolz, Lukas
    Waldmann, Thomas
    Wohlfahrt-Mehrens, Margret
    Aurbach, Doron
    Winter, Martin
    Ein-Eli, Yair
    Janek, Jurgen
    ADVANCED ENERGY MATERIALS, 2021, 11 (33)
  • [9] Fast charging of energy-dense lithium-ion batteries
    Wang, Chao-Yang
    Liu, Teng
    Yang, Xiao-Guang
    Ge, Shanhai
    Stanley, Nathaniel, V
    Rountree, Eric S.
    Leng, Yongjun
    McCarthy, Brian D.
    NATURE, 2022, 611 (7936) : 485 - +
  • [10] Fuzzy Controlled Fast Charging System for Lithium-Ion Batteries
    Cheng, Ming-Wang
    Wang, Shih-Ming
    Lee, Yuang-Shung
    Hsiao, Sung-Hsin
    2009 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS, VOLS 1 AND 2, 2009, : 446 - +