On variational principles, level sets, well-posedness, and epsilon-solutions in vector optimization

被引:50
作者
Dentcheva, D
Helbig, S
机构
[1] Institute for Mathematics, Bulgarian Academy of Sciences, Sofia
关键词
nonlinear vector optimization; variational principles; well-posedness;
D O I
10.1007/BF02192533
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Using the concept for epsilon-efficient solutions introduced in Refs. 1 and 2, we extend the Ekeland variational principle and another variational principle given in Ref. 3 to vector-valued objective functions. This enables us to establish a kind of well-posedness for the resulting perturbed vector optimization problems. Based on this definition of epsilon-efficiency, we also formulate a concept for level sets and prove some results about the Kuratowski limits of level sets.
引用
收藏
页码:325 / 349
页数:25
相关论文
共 18 条
[1]  
Coban M.M., 1986, P 15 SPRING C UN BUL, P141
[2]   NON-CONVEX MINIMIZATION PROBLEMS [J].
EKELAND, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :443-474
[3]   NONCONVEX SEPARATION THEOREMS AND SOME APPLICATIONS IN VECTOR OPTIMIZATION [J].
GERTH, C ;
WEIDNER, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1990, 67 (02) :297-320
[4]  
HELBIG S, 1994, OR SPEKTRUM, V16, P179, DOI 10.1007/BF01720705
[5]  
HELBIG S, 1992, OPT DAYS 1992 MONTR
[6]  
KHANH PQ, 1986, 357 POL AC SCI I MAT
[7]   EPSILON-SOLUTIONS IN VECTOR MINIMIZATION PROBLEMS [J].
LORIDAN, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1984, 43 (02) :265-276
[8]  
Luc D. T., 1989, THEORY VECTOR OPTIMI
[9]   A NONCONVEX VECTOR MINIMIZATION PROBLEM [J].
NEMETH, AB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (07) :669-678