Robust K-means based Active Contours for Fast Inhomogeneity Image Segmentation
被引:0
作者:
Hao, Zhihui
论文数: 0引用数: 0
h-index: 0
机构:
Northwest A&F Univ, Coll Sci, Yangling 712100, Peoples R ChinaNorthwest A&F Univ, Coll Sci, Yangling 712100, Peoples R China
Hao, Zhihui
[1
]
Xie, Xiaozhen
论文数: 0引用数: 0
h-index: 0
机构:
Northwest A&F Univ, Coll Sci, Yangling 712100, Peoples R ChinaNorthwest A&F Univ, Coll Sci, Yangling 712100, Peoples R China
Xie, Xiaozhen
[1
]
Zhang, Qianying
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R ChinaNorthwest A&F Univ, Coll Sci, Yangling 712100, Peoples R China
Zhang, Qianying
[2
]
机构:
[1] Northwest A&F Univ, Coll Sci, Yangling 712100, Peoples R China
[2] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
来源:
2015 8TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP)
|
2015年
关键词:
Medical Image Segmentation;
Active contours;
Intensity Inhomogeneity;
K-means;
LEVEL SET METHOD;
D O I:
暂无
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
A novel robust K-means based active contours model is proposed to segment medical images with various noise and intensity inhomogeneities. Relying on the correntropy-based image features, the model uses the local adaptive weights to be robust to various noises. Moreover, the combination of information in the global and the local regions ensures that our approach is extremely hard to trap into a local minimum. To avoid the re-initialization and shorten the computational time, we use the signed distance functions to regularize the level set functions, and adopt the iteratively re-weighted method to accelerate our algorithm during the contour evolution. Experimental results show that our algorithm can fast achieve the robust segmentation results in the presence of the intensity inhomogeneities, various noise and blur.
机构:
Zhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Zhejiang, Peoples R ChinaZhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Zhejiang, Peoples R China
Dong, Fangfang
Chen, Zengsi
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Chinese Med Univ, Coll Pharmaceut Sci, Hangzhou 310053, Zhejiang, Peoples R ChinaZhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Zhejiang, Peoples R China
Chen, Zengsi
Wang, Jinwei
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Zhejiang, Peoples R China
机构:
Zhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Zhejiang, Peoples R ChinaZhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Zhejiang, Peoples R China
Dong, Fangfang
Chen, Zengsi
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Chinese Med Univ, Coll Pharmaceut Sci, Hangzhou 310053, Zhejiang, Peoples R ChinaZhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Zhejiang, Peoples R China
Chen, Zengsi
Wang, Jinwei
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Zhejiang, Peoples R China