ANANSE: an enhancer network-based computational approach for predicting key transcription factors in cell fate determination

被引:37
作者
Xu, Quan [1 ]
Georgiou, Georgios [1 ]
Frolich, Siebren [1 ]
van der Sande, Maarten [1 ]
Veenstra, Gert Jan C. [1 ]
Zhou, Huiqing [1 ,2 ]
van Heeringen, Simon J. [1 ]
机构
[1] Radboud Univ Nijmegen, Fac Sci, Radboud Inst Mol Life Sci, Dept Mol Dev Biol, NL-6525 GA Nijmegen, Netherlands
[2] Radboud Univ Nijmegen Med Ctr, Radboud Inst Mol Life Sci, Dept Human Genet, NL-6525 GA Nijmegen, Netherlands
基金
美国国家卫生研究院;
关键词
PLURIPOTENT STEM-CELLS; HUMAN FIBROBLASTS; DIRECT CONVERSION; TERMINAL DIFFERENTIATION; OPEN CHROMATIN; ENCODE DATA; BINDING; EXPRESSION; INFERENCE; CONFORMATION;
D O I
10.1093/nar/gkab598
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proper cell fate determination is largely orchestrated by complex gene regulatory networks centered around transcription factors. However, experimental elucidation of key transcription factors that drive cellular identity is currently often intractable. Here, we present ANANSE (ANalysis Algorithm for Networks Specified by Enhancers), a network-based method that exploits enhancer-encoded regulatory information to identify the key transcription factors in cell fate determination. As cell type-specific transcription factors predominantly bind to enhancers, we use regulatory networks based on enhancer properties to prioritize transcription factors. First, we predict genome-wide binding profiles of transcription factors in various cell types using enhancer activity and transcription factor binding motifs. Subsequently, applying these inferred binding profiles, we construct cell type-specific gene regulatory networks, and then predict key transcription factors controlling cell fate transitions using differential networks between cell types. This method outperforms existing approaches in correctly predicting major transcription factors previously identified to be sufficient for trans-differentiation. Finally, we apply ANANSE to define an atlas of key transcription factors in 18 normal human tissues. In conclusion, we present a ready-to-implement computational tool for efficient prediction of transcription factors in cell fate determination and to study transcription factor-mediated regulatory mechanisms. ANANSE is freely available at https://github.com/vanheeringen-lab/ANANSE.
引用
收藏
页码:7966 / 7985
页数:20
相关论文
共 154 条
[1]  
Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/NMETH.4463, 10.1038/nmeth.4463]
[2]   Functional characterization of somatic mutations in cancer using network-based inference of protein activity [J].
Alvarez, Mariano J. ;
Shen, Yao ;
Giorgi, Federico M. ;
Lachmann, Alexander ;
Ding, B. Belinda ;
Ye, B. Hilda ;
Califano, Andrea .
NATURE GENETICS, 2016, 48 (08) :838-+
[3]  
Anderson EL, 2008, P NATL ACAD SCI USA, V105, P14976, DOI [10.1073/pnas.0807297105, 10.1038/s41598-019-45839-z]
[4]   An atlas of active enhancers across human cell types and tissues [J].
Andersson, Robin ;
Gebhard, Claudia ;
Miguel-Escalada, Irene ;
Hoof, Ilka ;
Bornholdt, Jette ;
Boyd, Mette ;
Chen, Yun ;
Zhao, Xiaobei ;
Schmidl, Christian ;
Suzuki, Takahiro ;
Ntini, Evgenia ;
Arner, Erik ;
Valen, Eivind ;
Li, Kang ;
Schwarzfischer, Lucia ;
Glatz, Dagmar ;
Raithel, Johanna ;
Lilje, Berit ;
Rapin, Nicolas ;
Bagger, Frederik Otzen ;
Jorgensen, Mette ;
Andersen, Peter Refsing ;
Bertin, Nicolas ;
Rackham, Owen ;
Burroughs, A. Maxwell ;
Baillie, J. Kenneth ;
Ishizu, Yuri ;
Shimizu, Yuri ;
Furuhata, Erina ;
Maeda, Shiori ;
Negishi, Yutaka ;
Mungall, Christopher J. ;
Meehan, Terrence F. ;
Lassmann, Timo ;
Itoh, Masayoshi ;
Kawaji, Hideya ;
Kondo, Naoto ;
Kawai, Jun ;
Lennartsson, Andreas ;
Daub, Carsten O. ;
Heutink, Peter ;
Hume, David A. ;
Jensen, Torben Heick ;
Suzuki, Harukazu ;
Hayashizaki, Yoshihide ;
Mueller, Ferenc ;
Forrest, Alistair R. R. ;
Carninci, Piero ;
Rehli, Michael ;
Sandelin, Albin .
NATURE, 2014, 507 (7493) :455-+
[5]  
[Anonymous], **DATA OBJECT**, DOI 10.5281/zenodo.3921913
[6]  
Artyomov M. N., 2021, bioRxiv, DOI DOI 10.1101/060012
[7]   ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs [J].
Balwierz, Piotr J. ;
Pachkov, Mikhail ;
Arnold, Phil ;
Gruber, Andreas J. ;
Zavolan, Mihaela ;
van Nimwegen, Erik .
GENOME RESEARCH, 2014, 24 (05) :869-884
[8]   Role of Sox2 in the development of the mouse neocortex [J].
Bani-Yaghoub, Mahmud ;
Tremblay, Roger G. ;
Lei, Joy X. ;
Zhang, Dongling ;
Zurakowski, Bogdan ;
Sandhu, Jagdeep K. ;
Smith, Brandon ;
Ribecco-Lutkiewicz, Maria ;
Kennedy, Jessica ;
Walker, P. Roy ;
Sikorska, Marianna .
DEVELOPMENTAL BIOLOGY, 2006, 295 (01) :52-66
[9]   The NIH Roadmap Epigenomics Mapping Consortium [J].
Bernstein, Bradley E. ;
Stamatoyannopoulos, John A. ;
Costello, Joseph F. ;
Ren, Bing ;
Milosavljevic, Aleksandar ;
Meissner, Alexander ;
Kellis, Manolis ;
Marra, Marco A. ;
Beaudet, Arthur L. ;
Ecker, Joseph R. ;
Farnham, Peggy J. ;
Hirst, Martin ;
Lander, Eric S. ;
Mikkelsen, Tarjei S. ;
Thomson, James A. .
NATURE BIOTECHNOLOGY, 2010, 28 (10) :1045-1048
[10]   Signaling and Transcriptional Networks in Heart Development and Regeneration [J].
Bruneau, Benoit G. .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2013, 5 (03)