Dissipative Kerr solitons in optical microresonators

被引:1228
作者
Kippenberg, Tobias J. [1 ]
Gaeta, Alexander L. [2 ]
Lipson, Michal [3 ]
Gorodetsky, Michael L. [4 ,5 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Phys, CH-1015 Lausanne, Switzerland
[2] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[3] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[4] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia
[5] Russian Quantum Ctr, Moscow 143025, Russia
基金
瑞士国家科学基金会;
关键词
FREQUENCY COMB GENERATION; PARAMETRIC OSCILLATION; TEMPORAL SOLITONS; CAVITY SOLITONS; DISPERSION; RESONATORS; MODELOCKING; MODULATION; EFFICIENCY; STABILITY;
D O I
10.1126/science.aan8083
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of compact, chip-scale optical frequency comb sources (microcombs) based on parametric frequency conversion in microresonators has seen applications in terabit optical coherent communications, atomic clocks, ultrafast distance measurements, dual-comb spectroscopy, and the calibration of astophysical spectrometers and have enabled the creation of photonic-chip integrated frequency synthesizers. Underlying these recent advances has been the observation of temporal dissipative Kerr solitons in microresonators, which represent self-enforcing, stationary, and localized solutions of a damped, driven, and detuned nonlinear Schrddinger equation. which was first introduced to describe spatial self-organization phenomena. The generation of dissipative Kerr solitons provide a mechanism by which coherent optical combs with bandwidth exceeding one octave can be synthesized and have given rise to a host of phenomena, such as the Stokes soliton, soliton crystals, soliton switching, or dispersive waves. Soliton microcombs are compact, are compatible with wafer-scale processing, operate at low power, can operate with gigahertz to terahertz line spacing, and can enable the implementation of frequency combs in remote and mobile environments outside the laboratory environment, on Earth, airborne, or in outer space.
引用
收藏
页数:11
相关论文
共 136 条
[111]  
Suh M-G., 2017, ARXIV 1705 06697
[112]   Gigahertz-repetition-rate soliton microcombs [J].
Suh, Myoung-Gyun ;
Vahala, Kerry .
OPTICA, 2018, 5 (01) :65-66
[113]   Microresonator soliton dual-comb spectroscopy [J].
Suh, Myoung-Gyun ;
Yang, Qi-Fan ;
Yang, Ki Youl ;
Yi, Xu ;
Vahala, Kerry J. .
SCIENCE, 2016, 354 (6312) :600-603
[114]   Optical lattice trap for Kerr solitons [J].
Taheri, Hossein ;
Matsko, Andrey B. ;
Maleki, Lute .
EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (06)
[115]   Ultrafast optical ranging using microresonator soliton frequency combs [J].
Trocha, P. ;
Karpov, M. ;
Ganin, D. ;
Pfeiffer, M. H. P. ;
Kordts, A. ;
Wolf, S. ;
Krockenberger, J. ;
Marin-Palomo, P. ;
Weimann, C. ;
Randel, S. ;
Freude, W. ;
Kippenberg, T. J. ;
Koos, C. .
SCIENCE, 2018, 359 (6378) :887-891
[116]   Optical frequency metrology [J].
Udem, T ;
Holzwarth, R ;
Hänsch, TW .
NATURE, 2002, 416 (6877) :233-237
[117]   Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators [J].
Wang, C. Y. ;
Herr, T. ;
Del'Haye, P. ;
Schliesser, A. ;
Hofer, J. ;
Holzwarth, R. ;
Haensch, T. W. ;
Picque, N. ;
Kippenberg, T. J. .
NATURE COMMUNICATIONS, 2013, 4
[118]   Intracavity characterization of micro-comb generation in the single-soliton regime [J].
Wang, Pei-Hsun ;
Jaramillo-Villegas, Jose A. ;
Xuan, Yi ;
Xue, Xiaoxiao ;
Bao, Chengying ;
Leaird, Daniel E. ;
Qi, Minghao ;
Weiner, Andrew M. .
OPTICS EXPRESS, 2016, 24 (10) :10890-10897
[119]   Stimulated Raman Scattering Imposes Fundamental Limits to the Duration and Bandwidth of Temporal Cavity Solitons [J].
Wang, Yadong ;
Anderson, Miles ;
Coen, Stephane ;
Murdoch, Stuart G. ;
Erkintalo, Miro .
PHYSICAL REVIEW LETTERS, 2018, 120 (05)
[120]   Experimental observation of coherent cavity soliton frequency combs in silica microspheres [J].
Webb, Karen E. ;
Erkintalo, Miro ;
Coen, Stephane ;
Murdoch, Stuart G. .
OPTICS LETTERS, 2016, 41 (20) :4613-4616