Bistatic ISAR Image Reconstruction Using Sparse-Recovery Interpolation of Missing Data

被引:25
作者
Bae, Ji-Hoon [1 ]
Kang, Byung-Soo [2 ]
Lee, Seong-Hyeon [2 ]
Yang, Eunjung [3 ]
Kim, Kyung-Tae [2 ]
机构
[1] Elect & Telecommun Res Inst, KSB Convergence Res Dept, 218 Gajeong Ro, Daejeon 34129, South Korea
[2] Pohang Univ Sci & Technol, Dept Elect Engn, 77 Cheongam Ro, Pohang 790784, South Korea
[3] Agcy Def Dev, Daejeon 305152, South Korea
关键词
SYNTHETIC-APERTURE-RADAR; MANEUVERING TARGETS; RCS;
D O I
10.1109/TAES.2016.150245
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
When a bistatic inverse synthetic aperture radar (ISAR) system fails to collect complete radar cross section (RCS) datasets, bistatic ISAR (Bi-ISAR) images are usually corrupted using the conventional Fourier transform (FT)-based imaging algorithm. To overcome this problem, this paper proposes a new Bi-ISAR image reconstruction method that includes three steps: suboptimal estimation of parameters regarding the bistatic angle in the Bi-ISAR signal model via an orthogonal matching pursuit-type group-searching scheme, Bi-ISAR signal reconstruction using the estimated parameters, and Bi-ISAR image generation using the FT-based imaging algorithm applied to the reconstructed Bi-ISAR signal. To validate the reconstruction capability of the proposed method, bistatic-scattered field data using the physical optics technique as well as the point-scatterer model are used for Bi-ISAR image reconstruction. The results show that the proposed sparse-recovery-interpolation approach based on the Bi-ISAR signal model reconstruction combined with the classical FT-based algorithm can yield high reconstruction accuracy for incomplete bistatic RCS data compared to conventional numerical interpolation methods and existing direct sparse reconstruction techniques.
引用
收藏
页码:1155 / 1167
页数:13
相关论文
共 29 条
[1]   Performance of Sparse Recovery Algorithms for the Reconstruction of Radar Images From Incomplete RCS Data [J].
Bae, Ji-Hoon ;
Kang, Byung-Soo ;
Kim, Kyung-Tae ;
Yang, Eunjung .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (04) :860-864
[2]   Compressive sensing [J].
Baraniuk, Richard G. .
IEEE SIGNAL PROCESSING MAGAZINE, 2007, 24 (04) :118-+
[3]   RCS of Complex Targets: Original Representation Validated by Measurements-Application to ISAR Imagery [J].
Bennani, Yacine ;
Comblet, Fabrice ;
Khenchaf, Ali .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (10) :3882-3891
[4]   Recent developments in detection, imaging and classification for airborne maritime surveillance [J].
Bon, N. ;
Hajduch, G. ;
Khenchaf, A. ;
Garello, R. ;
Quellec, J. -M. .
IET SIGNAL PROCESSING, 2008, 2 (03) :192-203
[5]  
Candes Emmanuel., 2005, USERS GUIDE L1 MAGIC
[6]   Ultrawide-band coherent processing [J].
Cuomo, KM ;
Piou, JE ;
Mayhan, JT .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1999, 47 (06) :1094-1107
[7]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[8]  
Duan J., 2013, EURASIP J ADV SIG PR, V2013, P1
[9]  
Elad M, 2010, SPARSE AND REDUNDANT REPRESENTATIONS, P3, DOI 10.1007/978-1-4419-7011-4_1
[10]  
Herd J., 2010, 2010 IEEE International Symposium on Phased Array Systems and Technology (ARRAY 2010), P457, DOI 10.1109/ARRAY.2010.5613327