On the number of the cusps of cuspidal plane curves

被引:22
作者
Tono, K [1 ]
机构
[1] Saitama Univ, Dept Math, Fac Sci, Urawa, Saitama 3388570, Japan
关键词
plane curves; logarithmic Kodaira dimension;
D O I
10.1002/mana.200310236
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we estimate an upper bound of the number of the cusps of a cuspidal plane curve. We prove that a cuspidal plane curve of genus g has no more than (21g + 17)/2 cusps. For example, a rational cuspidal plane curve has no more than 8 cusps and an elliptic one has no more than 19 cusps. (C) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:216 / 221
页数:6
相关论文
共 15 条
[1]  
[Anonymous], J MATH
[2]  
BRIESKORN E., 1986, Plane algebraic curves
[3]  
Fujita T., 1982, J. Fac. Sci. Univ. Tokyo, Sec. IA, V29, P503
[4]  
GURJAR RV, 1992, MATH ANN, V294, P464
[5]  
Hirzebruch F., 1986, CONT MATH, V58, P141, DOI DOI 10.1090/CONM/058.1/860410
[6]  
Ivinskis K., 1985, THESIS BONN
[7]   A NUMERICAL CHARACTERIZATION OF BALL QUOTIENTS FOR NORMAL SURFACES WITH BRANCH LOCI [J].
KOBAYASHI, R ;
NAKAMURA, S ;
SAKAI, F .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1989, 65 (07) :238-241
[8]   THE DEGREE OF RATIONAL CUSPIDAL CURVES [J].
MATSUOKA, T ;
SAKAI, F .
MATHEMATISCHE ANNALEN, 1989, 285 (02) :233-247
[9]  
MIYAOKA Y, 1979, JOURNEES GEOMETRIE A, P239
[10]  
SAKAI F, 1978, P INT S ALG GEOM KYO, P643