Correlation analysis of sample thickness, heat flux, and cone calorimetry test data of polystyrene foam

被引:70
作者
An, Weiguang [1 ,2 ]
Jiang, Lin [1 ]
Sun, Jinhua [1 ]
Liew, K. M. [2 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
[2] City Univ Hong Kong, Dept Architectural & Civil Engn, Kowloon 999077, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Polystyrene; Cone calorimeter; Sample thickness effect; Ignition time; Heat release rate; Correlation analysis; FIRE; BEHAVIOR; WOOD; RELEASE;
D O I
10.1007/s10973-014-4165-9
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper deals with thermal and fire performance evaluation of expanded polystyrene (EPS) and extruded polystyrene (XPS) in a cone calorimeter with a piloted ignition. The correlation analysis of sample thickness, heat flux (q) over dot '', and experimental results is performed. It is found that the heat flux follows a linear function of the vertical distance from the standard horizontal level to the sample. An optimization ignition model is established considering the effects of sample thickness (or radiant distance). The modified ignition time ((t) over bar (ig)) decreases with the increase of the sample thickness. Both t(ig) (ignition time) and (t) over bar (ig) drop as external heat flux rises. EPS's t(ig) is more sensitive to the variation of external heat flux. Thermal thickness (delta(P)) decreases with the intensifying of heat flux, and delta(P) is in linear correlation with rho/(q) over dot ''. When sample is quite thin or the irradiance level is low (2 cm-thick PS under 35 kW m(-2) and 3 cm-thick EPS under 25 kW m(-2)), single peak heat release rate (HRR) is present. Under other situations, there are at least two peak values. For EPS, the first peak value is higher than the last, while the reverse is true for XPS (exclusive of 5 cm-thick XPS at 35 kW m(-2)). Both peak and mean HRR rise linearly with the increase of external heat flux. t(ig), (t) over bar (ig), critical heat flux and delta(P) of XPS are smaller than those of EPS, while the reverse is true for mean HRR. The ignition and heat release risk of PS drop with the decrease of external heat flux, and these hazards of XPS are higher than those of EPS.
引用
收藏
页码:229 / 238
页数:10
相关论文
共 23 条
[1]  
[Anonymous], 4610842008 GB
[2]   IGNITABILITY MEASUREMENTS WITH THE CONE CALORIMETER [J].
BABRAUSKAS, V ;
PARKER, WJ .
FIRE AND MATERIALS, 1987, 11 (01) :31-43
[3]  
Babrauskas V., 2003, Ignition Handbook: Principles and Applications to Fire Safety Engineering, Fire Investigation, Risk Management and Forensic Science
[4]  
Collier PCR, 2004, IMPROVING FIRE PERFO
[5]   Treated and untreated foam core particleboards with intumescent veneer [J].
Dietenberger, Mark A. ;
Shalbafan, Ali ;
Welling, Johannes ;
Boardman, Charles .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2013, 114 (03) :979-987
[6]   Time to ignition, heat release rate and fire endurance time of wood in cone calorimeter test [J].
Harada, T .
FIRE AND MATERIALS, 2001, 25 (04) :161-167
[7]  
Huang X., 2011, THESIS U SCI TECHNOL
[8]  
Incropera F P., 2006, Fundamentals of Heat and Mass Transfer
[9]   Estimating the fire behavior of wood flooring using a cone calorimeter [J].
Kim, Junhyun ;
Lee, Jeong-Hun ;
Kim, Sumin .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2012, 110 (02) :677-683
[10]   Characterization of thermal properties and analysis of combustion behavior of PMMA in a cone calorimeter [J].
Luche, Jocelyn ;
Rogaume, Thomas ;
Richard, Franck ;
Guillaume, Eric .
FIRE SAFETY JOURNAL, 2011, 46 (07) :451-461