Microbial temperature sensitivity and biomass change explain soil carbon loss with warming

被引:339
作者
Walker, Tom W. N. [1 ,2 ]
Kaiser, Christina [1 ,3 ]
Strasser, Florian [4 ]
Herbold, Craig W. [4 ]
Leblans, Niki I. W. [5 ,6 ]
Woebken, Dagmar [4 ]
Janssens, Ivan A. [5 ]
Sigurdsson, Bjarni D. [6 ]
Richter, Andreas [1 ,3 ]
机构
[1] Univ Vienna, Dept Microbiol & Ecosyst Sci, Div Terr Ecosyst Res, Vienna, Austria
[2] Univ Lausanne, Dept Ecol & Evolut, Lausanne, Switzerland
[3] Inst Appl Syst Anal, Laxenburg, Austria
[4] Univ Vienna, Dept Microbiol & Ecosyst Sci, Div Microbial Ecol, Vienna, Austria
[5] Univ Antwerp, Dept Biol, Antwerp, Belgium
[6] Agr Univ Iceland, Hvanneyri, Borgarnes, Iceland
基金
欧洲研究理事会;
关键词
USE EFFICIENCY; CLIMATE-CHANGE; DECOMPOSER COMMUNITIES; THERMAL-ACCLIMATION; CYCLE FEEDBACKS; RESPIRATION; PHYSIOLOGY; DYNAMICS; PATTERNS; SYSTEM;
D O I
10.1038/s41558-018-0259-x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil microorganisms control carbon losses from soils to the atmosphere(1-3), yet their responses to climate warming are often short-lived and unpredictable (4-7). Two mechanisms, microbial acclimation and substrate depletion, have been proposed to explain temporary warming effects on soil microbial activity(8-10). However, empirical support for either mechanism is unconvincing. Here we used geothermal temperature gradients (>50 years of field warming)(11) and a short-term experiment to show that microbial activity (gross rates of growth, turnover, respiration and carbon uptake) is intrinsically temperature sensitive and does not acclimate to warming (+6 degrees C) over weeks or decades. Permanently accelerated microbial activity caused carbon loss from soil. However, soil carbon loss was temporary because substrate depletion reduced microbial biomass and constrained the influence of microbes over the ecosystem. A microbial biogeochemical model(12-14) showed that these observations are reproducible through a modest, but permanent, acceleration in microbial physiology. These findings reveal a mechanism by which intrinsic microbial temperature sensitivity and substrate depletion together dictate warming effects on soil carbon loss via their control over microbial biomass. We thus provide a framework for interpreting the links between temperature, microbial activity and soil carbon loss on timescales relevant to Earth's climate system.
引用
收藏
页码:885 / +
页数:7
相关论文
共 50 条
[21]   Shifts in the microbial community structure explain the response of soil respiration to land-use change but not to climate warming [J].
Nazaries, Loic ;
Tottey, William ;
Robinson, Lucinda ;
Khachane, Amit ;
Abu Al-Soud, Waleed ;
Sorensen, Soren ;
Singh, Brajesh K. .
SOIL BIOLOGY & BIOCHEMISTRY, 2015, 89 :123-134
[22]   Microbial nutrient limitations and chemical composition of soil organic carbon regulate the organic carbon mineralization and temperature sensitivity in forest and grassland soils [J].
You, Mengyang ;
Guo, Diankun ;
Shi, Hongai ;
He, Peng ;
Burger, Martin ;
Li, Lu-Jun .
PLANT AND SOIL, 2025,
[23]   Reduced carbon use efficiency and increased microbial turnover with soil warming [J].
Li, Jianwei ;
Wang, Gangsheng ;
Mayes, Melanie A. ;
Allison, Steven D. ;
Frey, Serita D. ;
Shi, Zheng ;
Hu, Xiao-Ming ;
Luo, Yiqi ;
Melillo, Jerry M. .
GLOBAL CHANGE BIOLOGY, 2019, 25 (03) :900-910
[24]   Nonlinear microbial thermal response and its implications for abrupt soil organic carbon responses to warming [J].
Yu, Kailiang ;
He, Lei ;
Niu, Shuli ;
Wang, Jinsong ;
Garcia-palacios, Pablo ;
Dacal, Marina ;
Averill, Colin ;
Georgiou, Katerina ;
Ye, Jian-sheng ;
Mo, Fei ;
Yang, Lu ;
Crowther, Thomas W. .
NATURE COMMUNICATIONS, 2025, 16 (01)
[25]   Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses [J].
Hopkins, Francesca M. ;
Filley, Timothy R. ;
Gleixner, Gerd ;
Lange, Markus ;
Top, Sara M. ;
Trumbore, Susan E. .
SOIL BIOLOGY & BIOCHEMISTRY, 2014, 76 :57-69
[26]   Microbial community responses reduce soil carbon loss in Tibetan alpine grasslands under short-term warming [J].
Li, Yaoming ;
Lv, Wangwang ;
Jiang, Lili ;
Zhang, Lirong ;
Wang, Shiping ;
Wang, Qi ;
Xue, Kai ;
Li, Bowen ;
Liu, Peipei ;
Hong, Huan ;
Renzen, Wangmu ;
Wang, A. ;
Luo, Caiyun ;
Zhang, Zhenhua ;
Dorji, Tsechoe ;
Tas, Neslihan ;
Wang, Zhezhen ;
Zhou, Huakun ;
Wang, Yanfen .
GLOBAL CHANGE BIOLOGY, 2019, 25 (10) :3438-3449
[27]   Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming [J].
Sorensen, Patrick O. ;
Finzi, Adrien C. ;
Giasson, Marc-Andre ;
Reinmann, Andrew B. ;
Sanders-DeMott, Rebecca ;
Templer, Pamela H. .
SOIL BIOLOGY & BIOCHEMISTRY, 2018, 116 :39-47
[28]   Temperature sensitivity of soil carbon fractions in boreal forest soil [J].
Karhu, Kristiina ;
Fritze, Hannu ;
Hamalainen, Kai ;
Vanhala, Pekka ;
Jungner, Hogne ;
Oinonen, Markku ;
Sonninen, Eloni ;
Tuomi, Mikko ;
Spetz, Peter ;
Kitunen, Veikko ;
Liski, Jari .
ECOLOGY, 2010, 91 (02) :370-376
[29]   Fast-decaying tree litter reduces the temperature sensitivity of soil carbon decomposition by increasing microbial necromass carbon [J].
Li, Ruihan ;
Wang, Chuankuan ;
Lv, Chunhua ;
Zhou, Tao ;
Yin, Shuang ;
Zhou, Zhenghu .
GEODERMA, 2025, 454
[30]   Biotic responses buffer warming-induced soil organic carbon loss in Arctic tundra [J].
Liang, Junyi ;
Xia, Jiangyang ;
Shi, Zheng ;
Jiang, Lifen ;
Ma, Shuang ;
Lu, Xingjie ;
Mauritz, Marguerite ;
Natali, Susan M. ;
Pegoraro, Elaine ;
Penton, Christopher Ryan ;
Plaza, Cesar ;
Salmon, Verity G. ;
Celis, Gerardo ;
Cole, James R. ;
Konstantinidis, Konstantinos T. ;
Tiedje, James M. ;
Zhou, Jizhong ;
Schuur, Edward A. G. ;
Luo, Yiqi .
GLOBAL CHANGE BIOLOGY, 2018, 24 (10) :4946-4959