Microbial temperature sensitivity and biomass change explain soil carbon loss with warming

被引:339
作者
Walker, Tom W. N. [1 ,2 ]
Kaiser, Christina [1 ,3 ]
Strasser, Florian [4 ]
Herbold, Craig W. [4 ]
Leblans, Niki I. W. [5 ,6 ]
Woebken, Dagmar [4 ]
Janssens, Ivan A. [5 ]
Sigurdsson, Bjarni D. [6 ]
Richter, Andreas [1 ,3 ]
机构
[1] Univ Vienna, Dept Microbiol & Ecosyst Sci, Div Terr Ecosyst Res, Vienna, Austria
[2] Univ Lausanne, Dept Ecol & Evolut, Lausanne, Switzerland
[3] Inst Appl Syst Anal, Laxenburg, Austria
[4] Univ Vienna, Dept Microbiol & Ecosyst Sci, Div Microbial Ecol, Vienna, Austria
[5] Univ Antwerp, Dept Biol, Antwerp, Belgium
[6] Agr Univ Iceland, Hvanneyri, Borgarnes, Iceland
基金
欧洲研究理事会;
关键词
USE EFFICIENCY; CLIMATE-CHANGE; DECOMPOSER COMMUNITIES; THERMAL-ACCLIMATION; CYCLE FEEDBACKS; RESPIRATION; PHYSIOLOGY; DYNAMICS; PATTERNS; SYSTEM;
D O I
10.1038/s41558-018-0259-x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil microorganisms control carbon losses from soils to the atmosphere(1-3), yet their responses to climate warming are often short-lived and unpredictable (4-7). Two mechanisms, microbial acclimation and substrate depletion, have been proposed to explain temporary warming effects on soil microbial activity(8-10). However, empirical support for either mechanism is unconvincing. Here we used geothermal temperature gradients (>50 years of field warming)(11) and a short-term experiment to show that microbial activity (gross rates of growth, turnover, respiration and carbon uptake) is intrinsically temperature sensitive and does not acclimate to warming (+6 degrees C) over weeks or decades. Permanently accelerated microbial activity caused carbon loss from soil. However, soil carbon loss was temporary because substrate depletion reduced microbial biomass and constrained the influence of microbes over the ecosystem. A microbial biogeochemical model(12-14) showed that these observations are reproducible through a modest, but permanent, acceleration in microbial physiology. These findings reveal a mechanism by which intrinsic microbial temperature sensitivity and substrate depletion together dictate warming effects on soil carbon loss via their control over microbial biomass. We thus provide a framework for interpreting the links between temperature, microbial activity and soil carbon loss on timescales relevant to Earth's climate system.
引用
收藏
页码:885 / +
页数:7
相关论文
共 50 条
[11]   Temperature sensitivity of soil bacterial community along contrasting warming gradient [J].
Wu, Jinfeng ;
Xiong, Jinbo ;
Hu, Changju ;
Shi, Yu ;
Wang, Kai ;
Zhang, Demin .
APPLIED SOIL ECOLOGY, 2015, 94 :40-48
[12]   Soil carbon loss with warming: New evidence from carbon-degrading enzymes [J].
Chen, Ji ;
Elsgaard, Lars ;
van Groenigen, Kees Jan ;
Olesen, Jurgen E. ;
Liang, Zhi ;
Jiang, Yu ;
Laerke, Pout E. ;
Zhang, Yuefang ;
Luo, Yiqi ;
Hungate, Bruce A. ;
Sinsabaugh, Robert L. ;
Jorgensen, Uffe .
GLOBAL CHANGE BIOLOGY, 2020, 26 (04) :1944-1952
[13]   Sensitivity of mangrove soil organic matter decay to warming and sea level change [J].
Arnaud, Marie ;
Baird, Andy J. ;
Morris, Paul J. ;
Thuong Huyen Dang ;
Tai Tue Nguyen .
GLOBAL CHANGE BIOLOGY, 2020, 26 (03) :1899-1907
[14]   The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization [J].
Wang, Chao ;
Morrissey, Ember M. ;
Mau, Rebecca L. ;
Hayer, Michaela ;
Pineiro, Juan ;
Mack, Michelle C. ;
Marks, Jane C. ;
Bell, Sheryl L. ;
Miller, Samantha N. ;
Schwartz, Egbert ;
Dijkstra, Paul ;
Koch, Benjamin J. ;
Stone, Bram W. ;
Purcell, Alicia M. ;
Blazewicz, Steven J. ;
Hofmockel, Kirsten S. ;
Pett-Ridge, Jennifer ;
Hungate, Bruce A. .
ISME JOURNAL, 2021, 15 (09) :2738-2747
[15]   Soil extractable carbon and nitrogen, microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland [J].
Zhou, Xiaoqi ;
Chen, Chengrong ;
Wang, Yanfen ;
Xu, Zhihong ;
Duan, Jichuang ;
Hao, Yanbin ;
Smaill, Simeon .
GEODERMA, 2013, 206 :24-31
[16]   Warming and Nitrogen Addition Change the Soil and Soil Microbial Biomass C:N:P Stoichiometry of a Meadow Steppe [J].
Gong, Shiwei ;
Zhang, Tao ;
Guo, Jixun .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2019, 16 (15)
[17]   Soil-carbon response to warming dependent on microbial physiology [J].
Allison, Steven D. ;
Wallenstein, Matthew D. ;
Bradford, Mark A. .
NATURE GEOSCIENCE, 2010, 3 (05) :336-340
[18]   Changes in soil microbial activity and their linkages with soil carbon under global warming [J].
Xu, Hongwei ;
Huang, Lulu ;
Chen, Jun ;
Zhou, Huiling ;
Wan, Yan ;
Qu, Qing ;
Wang, Minggang ;
Xue, Sha .
CATENA, 2023, 232
[19]   Deterministic assembly of grassland soil microbial communities driven by climate warming amplifies soil carbon loss [J].
Wang, Xing ;
Wang, Zhengchen ;
Chen, Fang ;
Zhang, Zhenjiao ;
Fang, Jingbo ;
Xing, Liheng ;
Zeng, Jia ;
Zhang, Qi ;
Liu, Hanyu ;
Liu, Weichao ;
Ren, Chengjie ;
Yang, Gaihe ;
Zhong, Zekun ;
Zhang, Wei ;
Han, Xinhui .
SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 923
[20]   Microbial responses to soil cooling might explain increases in microbial biomass in winter [J].
Jörg Schnecker ;
Felix Spiegel ;
Yue Li ;
Andreas Richter ;
Taru Sandén ;
Heide Spiegel ;
Sophie Zechmeister-Boltenstern ;
Lucia Fuchslueger .
Biogeochemistry, 2023, 164 :521-535