MEAN PERIODIC SOLUTIONS OF A INHOMOGENEOUS HEAT EQUATION WITH RANDOM COEFFICIENTS

被引:0
作者
Kurina, Galina [1 ,2 ,3 ]
Zadorozhniy, Vladimir [1 ]
机构
[1] Voronezh State Univ, Univ Skaya Pl 1, Voronezh 394018, Russia
[2] Inst Law & Econ, Leninskii Pr 119-A, Voronezh 394042, Russia
[3] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Vavilova Ul 44-2, Moscow 119333, Russia
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2020年 / 13卷 / 05期
基金
俄罗斯科学基金会;
关键词
Heat equation; random coefficients; periodicity of mathematical expectation; EXISTENCE;
D O I
10.3934/dcdss.2020087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present conditions ensuring the periodicity of the mathematical expectation of a solution of a scalar linear inhomogeneous heat equation with random coefficients where the coefficient in front of the unknown functions is Gaussian or it is uniformly distributed. The obtained results may be treated as finding a control ensuring the periodicity of the mathematical expectation of a solution of the heat equation.
引用
收藏
页码:1543 / 1551
页数:9
相关论文
共 10 条
[1]  
Amann H., 1978, Nonlinear Analysis: A Collection of Papers in Honor of Erich H. Rothe, DOI [10.1016/b978-0-12-165550-1.50007-0, DOI 10.1016/B978-0-12-165550-1.50007-0]
[3]  
Khasminskii R. Z., 1969, USTOYCHIVOST SISTEM
[4]  
KOLESOV YS, 1964, DOKL AKAD NAUK SSSR+, V157, P1288
[5]  
Shmulev I. I., 1965, MAT SBORNIK, V66, P398
[6]  
TIKHONOV AN, 1953, URAVNENIYA MATEMATIC
[7]  
Yakubovich V. A., 1972, LINEINYE DIFFERENCIA
[8]   Mean periodic solutions of a linear inhomogeneous first-order differential equation with random coefficients [J].
Zadorozhniy, V. G. ;
Kurina, G. A. .
DIFFERENTIAL EQUATIONS, 2014, 50 (06) :722-741
[9]   Mean-Periodic Solutions of a First-Order Linear Differential Equation [J].
Zadorozhniy, V. G. ;
Kurina, G. A. .
DOKLADY MATHEMATICS, 2013, 87 (03) :325-330
[10]  
Zadorozhniy V. G., 2006, METODY VARIATSIONNOG