Transient induced tungsten melting at the Joint European Torus (JET)

被引:23
作者
Coenen, J. W. [1 ,51 ]
Matthews, G. F. [2 ,19 ]
Krieger, K. [3 ,74 ]
Iglesias, D. [2 ,19 ]
Bunting, P. [2 ,19 ]
Corre, Y. [4 ,20 ]
Silburn, S. [2 ,19 ]
Balboa, I. [2 ,19 ]
Bazylevs, B. [5 ]
Conway, N. [2 ,19 ]
Coffey, I. [2 ,41 ]
Dejarnac, R. [6 ,62 ]
Gauthier, E. [3 ,20 ]
Gaspar, J. [7 ]
Jachmich, S. [2 ,47 ,70 ]
Jepu, I. [8 ,98 ]
Makepeace, C. [9 ]
Scannell, R. [2 ,19 ]
Stamp, M. [2 ]
Peterssonm, P. [10 ]
Pitts, R. A. [11 ]
Wiesen, S. [1 ,51 ]
Widdowson, A. [2 ]
Heinola, K. [12 ,113 ]
Baron-Wiechec, A. [2 ]
Abduallev, S. [51 ]
Abhangi, M. [58 ]
Abreu, P. [65 ]
Afzal, M. [19 ]
Aggarwal, K. M. [41 ]
Ahlgren, T. [113 ]
Ahn, J. H. [20 ]
Aho-Mantila, L. [123 ]
Aiba, N. [81 ]
Airila, M. [123 ]
Albanese, R. [116 ]
Aldred, V. [19 ]
Alegre, D. [105 ]
Alessi, E. [57 ]
Aleynikov, P. [67 ]
Alfier, A. [24 ]
Alkseev, A. [84 ]
Allinson, M. [19 ]
Alper, B. [19 ]
Alves, E. [65 ]
Ambrosino, G. [116 ]
Ambrosino, R. [117 ]
Amicucci, L. [102 ]
Amosov, V. [100 ]
Sunden, E. Andersson [34 ]
机构
[1] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[2] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[3] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[4] CEA, IRFM, F-13108 St Paul Les Durance, France
[5] Karlsruhe Inst Technol, D-76021 Karlsruhe, Czech Republic
[6] Inst Plasma Phys CAS, Slovankou 3, Prague 18200 8, Czech Republic
[7] Aix Marseille Univ, CNRS, IUSTI UMR 7343, 5 Rue Enrico Fermi, F-13453 Marseille, France
[8] Natl Inst Laser Plasma & Radiat Phys, Bucharest, Romania
[9] Univ Oxford, Oxford Mat, Parks Rd, Oxford OX13 3PH, England
[10] Royal Inst Technol KTH, Fus Plasma Phys, SE-10044 Stockholm, Sweden
[11] ITER Org, Route Vinon Sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France
[12] Univ Helsinki, POB 64, FI-00560 Helsinki, Finland
[13] Aalto Univ, POB 14100, FIN-00076 Aalto, Finland
[14] Aix Marseille Univ, CNRS, Ctr Marseille, M2P2 UMR 7340, F-13451 Marseille, France
[15] Aix Marseille Univ, CNRS, IUSTI UMR 7343, F-13013 Marseille, France
[16] Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13013 Marseille, France
[17] Arizona State Univ, Tempe, AZ USA
[18] Barcelona Supercomp Ctr, Barcelona, Spain
[19] CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[20] CEA, IRFM, F-13108 St Paul Les Durance, France
[21] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA
[22] Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 160, BR-22290180 Rio De Janeiro, Brazil
[23] Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy
[24] Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy
[25] Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea
[26] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
[27] Univ Ghent, Dept Appl Phys UG, St Pietersnieuwstr 41, B-9000 Ghent, Belgium
[28] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[29] Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi 09123, Cagliari, Italy
[30] Comenius Univ, Dept Expt Phys, Fac Math Phys & Informat, Mlynska Dolina F2, Bratislava 84248, Slovakia
[31] Warsaw Univ Technol, Dept Mat Sci, PL-01152 Warsaw, Poland
[32] Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Daejeon 34141, South Korea
[33] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
[34] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[35] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[36] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[37] KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden
[38] Univ Basel, Dept Phys, Basel, Switzerland
[39] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[40] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[41] Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland
[42] Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, I-95125 Catania, Italy
[43] Univ Trento, Dipartimento Ingn Ind, Trento, Italy
[44] Dublin City Univ, Dublin, Ireland
[45] Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland
[46] EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany
[47] Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England
[48] European Commiss, B-1049 Brussels, Belgium
[49] ULB, Fluid & Plasma Dynam, Campus Plaine CP 231 Blvd Triomphe, B-1050 Brussels, Belgium
[50] FOM Inst DIFFER, Eindhoven, Netherlands
关键词
fusion; melting; plasma wall interaction; tungsten; plasma facing components; EDGE LOCALIZED MODES; LAYER EROSION; JXB FORCE; MACROBRUSH; EVENTS; DAMAGE; FLUX;
D O I
10.1088/1402-4896/aa8789
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Melting is one of the major risks associated with tungsten (W) plasma-facing components (PFCs) in tokamaks like JET or ITER. These components are designed such that leading edges and hence excessive plasma heat loads deposited at near normal incidence are avoided. Due to the high stored energies in ITER discharges, shallow surface melting can occur under insufficiently mitigated plasma disruption and so-called edge localised modes-power load transients. A dedicated program was carried out at the JET to study the physics and consequences of W transient melting. Following initial exposures in 2013 (ILW-1) of a W-lamella with leading edge, new experiments have been performed on a sloped surface (15 degrees slope) during the 2015/2016 (ILW-3) campaign. This new experiment allows significantly improved infrared thermography measurements and thus resolved important issue of power loading in the context of the previous leading edge exposures. The new lamella was monitored by local diagnostics: spectroscopy, thermography and high-resolution photography in between discharges. No impact on the main plasma was observed despite a strong increase of the local W source consistent with evaporation. In contrast to the earlier exposure, no droplet emission was observed from the sloped surface. Topological modifications resulting from the melting are clearly visible between discharges on the photographic images. Melt damage can be clearly linked to the infrared measurements: the emissivity drops in zones where melting occurs. In comparison with the previous leading edge experiment, no runaway melt motion is observed, consistent with the hypothesis that the escape of thermionic electrons emitted from the melt zone is largely suppressed in this geometry, where the magnetic field intersects the surface at lower angles than in the case of perpendicular impact on a leading edge. Utilising both exposures allows us to further test the model of the forces driving melt motion that successfully reproduced the findings from the original leading edge exposure. Since the ILW-1 experiments, the exposed misaligned lamella has now been retrieved from the JET machine and post mortem analysis has been performed. No obvious mass loss is observed. Profilometry of the ILW-1 lamella shows the structure of the melt damage which is in line with the modell predictions thus allowing further model validation. Nuclear reaction analysis shows a tenfold reduction in surface deuterium concentration in the molten surface in comparison to the non-molten part of the lamella.
引用
收藏
页数:9
相关论文
共 44 条
  • [1] Thermal analysis of an exposed tungsten edge in the JET divertor
    Arnoux, G.
    Loenen, J.
    Bazylev, B.
    Corre, Y.
    Matthews, G. F.
    Balboa, I.
    Clever, M.
    Dejarnac, R.
    Devaux, S.
    Eich, T.
    Gauthier, E.
    Frassinetti, L.
    Horacek, J.
    Jachmich, S.
    Kinna, D.
    Marsen, S.
    Mertens, Ph.
    Pitts, R. A.
    Rack, M.
    Sergienko, G.
    Sieglin, B.
    Stamp, M.
    Thompson, V.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2015, 463 : 415 - 419
  • [2] Arnoux G., 2012, REV SCI INSTRUM, V83
  • [3] Upgrade of the infrared camera diagnostics for the JET ITER-like wall divertor
    Balboa, I.
    Arnoux, G.
    Eich, T.
    Sieglin, B.
    Devaux, S.
    Zeidner, W.
    Morlock, C.
    Kruezi, U.
    Sergienko, G.
    Kinna, D.
    Thomas, P. D.
    Rack, M.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10)
  • [4] Bazylev B, 2013, PROBL ATOM SCI TECH, P3
  • [5] Numerical simulations of tungsten melt layer erosion caused by J x B force at TEXTOR
    Bazylev, B.
    Igitkhanov, Yu
    Coenen, J. W.
    Philipps, V.
    Ueda, Y.
    [J]. PHYSICA SCRIPTA, 2011, T145
  • [6] Experiments and modeling of droplet emission from tungsten under transient heat loads
    Bazylev, B.
    Landman, I.
    Loarte, A.
    Klimov, N. S.
    Podkovyrov, V. L.
    Safronov, V. M.
    [J]. PHYSICA SCRIPTA, 2009, T138
  • [7] Experimental and theoretical investigation of droplet emission from tungsten melt layer
    Bazylev, B.
    Janeschitz, G.
    Landman, I.
    Loarte, A.
    Klimov, N. S.
    Podkovyrovd, V. L.
    Safronov, V. M.
    [J]. FUSION ENGINEERING AND DESIGN, 2009, 84 (2-6) : 441 - 445
  • [8] Melt damage simulation of W-macrobrush and divertor gaps after multiple transient events in ITER
    Bazylev, B. N.
    Janeschitz, G.
    Landman, I. S.
    Loarte, A.
    Pestchanyi, S. E.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2007, 363 (1011-1015) : 1011 - 1015
  • [9] Erosion of macrobrush tungsten armor after multiple intense transient events in ITER
    Bazylev, BN
    Janeschitz, G
    Landman, IS
    Pestchanyi, SE
    [J]. FUSION ENGINEERING AND DESIGN, 2005, 75-79 : 407 - 411
  • [10] Materials for DEMO and reactor applications-boundary conditions and new concepts
    Coenen, J. W.
    Antusch, S.
    Aumann, M.
    Biel, W.
    Du, J.
    Engels, J.
    Heuer, S.
    Houben, A.
    Hoeschen, T.
    Jasper, B.
    Koch, F.
    Linke, J.
    Litnovsky, A.
    Mao, Y.
    Neu, R.
    Pintsuk, G.
    Riesch, J.
    Rasinski, M.
    Reiser, J.
    Rieth, M.
    Terra, A.
    Unterberg, B.
    Weber, Th
    Wegener, T.
    You, J-H
    Linsmeier, Ch
    [J]. PHYSICA SCRIPTA, 2016, T167