Quantitative sub-surface and non-contact imaging using scanning microwave microscopy

被引:43
作者
Gramse, Georg [1 ]
Brinciotti, Enrico [2 ]
Lucibello, Andrea [3 ]
Patil, Samadhan B. [4 ]
Kasper, Manuel [1 ]
Rankl, Christian [2 ]
Giridharagopal, Rajiv [5 ]
Hinterdorfer, Peter [1 ]
Marcelli, Romolo [3 ]
Kienberger, Ferry [2 ]
机构
[1] Johannes Kepler Univ Linz, Inst Biophys, A-4020 Linz, Austria
[2] Keysight Technol Austria GmbH, Keysight Labs, A-4020 Linz, Austria
[3] CNR IMM Roma, I-00133 Rome, Italy
[4] London Ctr Nanotechnol, London WC1H 0AH, England
[5] Intel Corp, Technol Mfg Grp Labs, Hillsboro, OR 97124 USA
基金
欧盟第七框架计划;
关键词
nanotechnology; calibration; complex impedance; capacitance; sub-surface imaging; scanning microwave microscopy;
D O I
10.1088/0957-4484/26/13/135701
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The capability of scanning microwave microscopy for calibrated sub-surface and non-contact capacitance imaging of silicon (Si) samples is quantitatively studied at broadband frequencies ranging from 1 to 20 GHz. Calibrated capacitance images of flat Si test samples with varying dopant density (10(15) - 10(19) atoms cm(-3)) and covered with dielectric thin films of SiO2 (100-400 nm thickness) are measured to demonstrate the sensitivity of scanning microwave microscopy (SMM) for sub-surface imaging. Using standard SMM imaging conditions the dopant areas could still be sensed under a 400 nm thick oxide layer. Non-contact SMM imaging in lift-mode and constant height mode is quantitatively demonstrated on a 50 nm thick SiO2 test pad. The differences between non-contact and contact mode capacitances are studied with respect to the main parameters influencing the imaging contrast, namely the probe tip diameter and the tip-sample distance. Finite element modelling was used to further analyse the influence of the tip radius and the tip-sample distance on the SMM sensitivity. The understanding of how the two key parameters determine the SMM sensitivity and quantitative capacitances represents an important step towards its routine application for non-contact and sub-surface imaging.
引用
收藏
页数:9
相关论文
共 29 条
[1]  
Farina M., 2011, IEEE T MICROW THEORY, V59, P7
[2]  
Feenstra B. J., 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192), P965, DOI 10.1109/MWSYM.1998.705152
[3]   Dielectric-constant measurement of thin insulating films at low frequency by nanoscale capacitance microscopy [J].
Fumagalli, Laura ;
Ferrari, Giorgio ;
Sampietro, Marco ;
Gomila, Gabriel .
APPLIED PHYSICS LETTERS, 2007, 91 (24)
[4]   Finite-size effects and analytical modeling of electrostatic force microscopy applied to dielectric films [J].
Gomila, G. ;
Gramse, G. ;
Fumagalli, L. .
NANOTECHNOLOGY, 2014, 25 (25)
[5]   Nanoscale capacitance microscopy of thin dielectric films [J].
Gomila, G. ;
Toset, J. ;
Fumagalli, L. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (02)
[6]   Calibrated complex impedance and permittivity measurements with scanning microwave microscopy [J].
Gramse, G. ;
Kasper, M. ;
Fumagalli, L. ;
Gomila, G. ;
Hinterdorfer, P. ;
Kienberger, F. .
NANOTECHNOLOGY, 2014, 25 (14)
[7]  
Hoffmann J, 2012, 2012 12TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO)
[8]   Calibrated nanoscale dopant profiling using a scanning microwave microscope [J].
Huber, H. P. ;
Humer, I. ;
Hochleitner, M. ;
Fenner, M. ;
Moertelmaier, M. ;
Rankl, C. ;
Imtiaz, A. ;
Wallis, T. M. ;
Tanbakuchi, H. ;
Hinterdorfer, P. ;
Kabos, P. ;
Smoliner, J. ;
Kopanski, J. J. ;
Kienberger, F. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (01)
[9]   Calibrated nanoscale capacitance measurements using a scanning microwave microscope [J].
Huber, H. P. ;
Moertelmaier, M. ;
Wallis, T. M. ;
Chiang, C. J. ;
Hochleitner, M. ;
Imtiaz, A. ;
Oh, Y. J. ;
Schilcher, K. ;
Dieudonne, M. ;
Smoliner, J. ;
Hinterdorfer, P. ;
Rosner, S. J. ;
Tanbakuchi, H. ;
Kabos, P. ;
Kienberger, F. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (11)
[10]   Tip geometry effects in dopant profiling by scanning microwave microscopy [J].
Humer, I. ;
Eckhardt, C. ;
Huber, H. P. ;
Kienberger, F. ;
Smoliner, J. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (04)