Minimal fq-martingale measures for exponential levy processes

被引:37
作者
Jeanblanc, Monique
Kloeppel, Susanne
Miyahara, Yoshio
机构
[1] Univ Evry Val dEssone, F-91025 Evry, France
[2] Nagoya City Univ, Grad Sch Econ, Nagoya, Aichi 8501, Japan
[3] Vienna Univ Technol Financial & Actuarial Math, A-1040 Vienna, Austria
关键词
levy processes; martingale measures; f(q)-minimal martingale measure; variance minimal martingale measure; f-divergence; structure condition; incomplete markets;
D O I
10.1214/07-AAP439
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let L be a multidimensional Levy process under P in its own filtration. The p-minimal martingale measure Q(q) is defined as that equivalent local martingale measure for 8 (L) which minimizes the f(q)-divergence E[(dQ/dp)(q)] for fixed q epsilon (-infinity, 0) boolean OR (1, infinity). We give necessary and sufficient conditions for the existence of Qq and an explicit formula for its density. For q = 2, we relate the sufficient conditions to the structure condition and discuss when the former are also necessary. Moreover, we show that Qq converges for q SE arrow 1 in entropy to the minimal entropy martingale measure.
引用
收藏
页码:1615 / 1638
页数:24
相关论文
共 20 条
[1]  
ANSEL JP, 1994, ANN I H POINCARE-PR, V30, P303
[2]   On the existence of minimax martingale measures [J].
Bellini, F ;
Frittelli, M .
MATHEMATICAL FINANCE, 2002, 12 (01) :1-21
[3]  
Choulli T., 1996, LECT NOTES MATH, V1626, P12
[4]   Minimal Hellinger martingale measures of order q [J].
Choulli, Tahir ;
Stricker, Christophe ;
Li, Jia .
FINANCE AND STOCHASTICS, 2007, 11 (03) :399-427
[5]  
Delbaen F., 2006, MATH ARBITRAGE
[6]   Minimal entropy preserves the Levy property: how and why [J].
Esche, F ;
Schweizer, M .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (02) :299-327
[7]  
Frittelli M., 2000, Finance Stoch, V4, P275, DOI DOI 10.1007/S007800050074
[8]   The minimal entropy martingale measures for geometric Levy processes [J].
Fujiwara, T ;
Miyahara, Y .
FINANCE AND STOCHASTICS, 2003, 7 (04) :509-531
[9]   Optimal portfolios for logarithmic utility [J].
Goll, T ;
Kallsen, J .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 89 (01) :31-48
[10]  
Goll T, 2001, FINANC STOCH, V5, P557