On Principal Ideal Multiplication Modules

被引:2
作者
Azizi, A. [1 ]
Jayaram, C. [2 ]
机构
[1] Shiraz Univ, Coll Sci, Shiraz, Iran
[2] Univ West Indies, Cave Hill, Barbados
关键词
LATTICES; RINGS;
D O I
10.1007/s11253-017-1367-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a commutative ring with identity and let M be a unitary R-module. A submodule N of M is said to be a multiple of M if N = rM for some r oee- R. If every submodule of M is a multiple of M, then M is said to be a principal ideal multiplication module. We characterize principal ideal multiplication modules and generalize some results from [A. Azizi, "Principal ideal multiplication modules," Algebra Colloq., 15, 637-648 (2008)].
引用
收藏
页码:337 / 347
页数:11
相关论文
共 21 条
[11]   2-join decomposition lattices [J].
Jayaram, C .
ALGEBRA UNIVERSALIS, 2001, 45 (01) :7-13
[12]  
Jayaram C., 2009, TURKISH J MATH, V33, P1
[13]   ARITHMETICAL RINGS [J].
JENSEN, CU .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1966, 17 (1-2) :115-&
[14]  
Johnson J. A., 1989, MATH JPN, V35, P761
[15]  
Larsen M. D., 1971, Pure and Applied Mathematics, V43
[16]  
LOW GM, 1990, COMMUN ALGEBRA, V18, P4353
[17]   PRINCIPAL ELEMENTS OF LATTICES OF IDEALS [J].
MCCARTHY, PJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 30 (01) :43-&
[18]  
Mott J. L., 1969, J SCI HIROSHIMA A1 M, V33, P73, DOI DOI 10.32917/HMJ/1206138588
[19]  
Northcott D. G., 1968, LESSONS RINGS MODULE
[20]  
SHAHABADDIN EA, 2007, INT J ALGEBRA, V1, P381