On Principal Ideal Multiplication Modules

被引:2
作者
Azizi, A. [1 ]
Jayaram, C. [2 ]
机构
[1] Shiraz Univ, Coll Sci, Shiraz, Iran
[2] Univ West Indies, Cave Hill, Barbados
关键词
LATTICES; RINGS;
D O I
10.1007/s11253-017-1367-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a commutative ring with identity and let M be a unitary R-module. A submodule N of M is said to be a multiple of M if N = rM for some r oee- R. If every submodule of M is a multiple of M, then M is said to be a principal ideal multiplication module. We characterize principal ideal multiplication modules and generalize some results from [A. Azizi, "Principal ideal multiplication modules," Algebra Colloq., 15, 637-648 (2008)].
引用
收藏
页码:337 / 347
页数:11
相关论文
共 21 条
[1]   Principal ideal multiplication modules [J].
Azizi, A. .
ALGEBRA COLLOQUIUM, 2008, 15 (04) :637-648
[2]   Intersection of prime submodules and dimension of modules [J].
Azizi, A .
ACTA MATHEMATICA SCIENTIA, 2005, 25 (03) :385-394
[3]   MULTIPLICATION MODULES [J].
BARNARD, A .
JOURNAL OF ALGEBRA, 1981, 71 (01) :174-178
[4]  
BECERRA L, 1984, TAMKANG J MATH, V15, P77
[5]  
Behboodi M., 2002, Far East J. Math. Sci., V6, P83
[6]   ALMOST MULTIPLICATION RINGS [J].
BUTTS, HS ;
PHILLIPS, RC .
CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (02) :267-&
[7]   MULTIPLICATION MODULES [J].
ELBAST, ZA ;
SMITH, PF .
COMMUNICATIONS IN ALGEBRA, 1988, 16 (04) :755-779
[8]  
Gabriel P., 1962, Bull. Soc. Math. France, V90, P323
[9]   THE LASKERIAN PROPERTY IN COMMUTATIVE RINGS [J].
HEINZER, W ;
LANTZ, D .
JOURNAL OF ALGEBRA, 1981, 72 (01) :101-114
[10]   Almost π-lattices [J].
Jayaram, C .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2004, 54 (01) :119-130