Type 1 conventional dendritic cells and interferons are required for spontaneous CD4+ and CD8+ T-cell protective responses to breast cancer

被引:38
作者
Mattiuz, Raphael [1 ,3 ,4 ]
Brousse, Carine [1 ]
Ambrosini, Marc [1 ]
Cancel, Jean-Charles [1 ]
Bessou, Gilles [1 ]
Mussard, Julie [2 ]
Sanlaville, Amelien [2 ]
Caux, Christophe [2 ]
Bendriss-Vermare, Nathalie [2 ]
Valladeau-Guilemond, Jenny [2 ]
Dalod, Marc [1 ]
Crozat, Karine [1 ]
机构
[1] Aix Marseille Univ, CNRS, Ctr Immunol Marseille Luminy, Turing Ctr Living Syst,INSERM, Marseille, France
[2] Univ Claude Bernard Lyon 1, Univ Lyon, INSERM 1052, Ctr Leon Berard,CNRS 5286,Canc Res Ctr Lyon, Lyon, France
[3] Icahn Sch Med Mt Sinai, Precis Immunol Inst, New York, NY 10029 USA
[4] Icahn Sch Med Mt Sinai, Tisch Canc Inst, New York, NY 10029 USA
基金
欧洲研究理事会;
关键词
breast cancer; cancer immunosurveillance; CD4(+) T cells; CD8(+) T cells; cDC1; IFN-gamma; interferons; CROSS-PRESENTATION; ANTITUMOR IMMUNITY; CLONAL EXPANSION; IFN-GAMMA; ANTIGEN; IDENTIFICATION; ACTIVATION; RECEPTOR; REVEALS; IL-12;
D O I
10.1002/cti2.1305
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Objectives. To better understand how immune responses may be harnessed against breast cancer, we investigated which immune cell types and signalling pathways are required for spontaneous control of a mouse model of mammary adenocarcinoma. Methods. The NOP23 mammary adenocarcinoma cell line expressing epitopes derived from the ovalbumin model antigen is spontaneously controlled when orthotopically engrafted in syngeneic C57BL/6 mice. We combined this breast cancer model with antibody-mediated depletion of lymphocytes and with mutant mice affected in interferon (IFN) or type 1 conventional dendritic cell (cDC1) responses. We monitored tumor growth and immune infiltration including the activation of cognate ovalbumin-specific T cells. Results. Breast cancer immunosurveillance required cDC1, NK/NK T cells, conventional CD4(+) T cells and CD8(+) cytotoxic T lymphocytes (CTLs). cDC1 were required constitutively, but especially during T-cell priming. In tumors, cDC1 were interacting simultaneously with CD4(+) T cells and tumor-specific CTLs. cDC1 expression of the XCR1 chemokine receptor and of the T-cell-attracting or T-cell-activating cytokines CXCL9, IL-12 and IL-15 was dispensable for tumor rejection, whereas IFN responses were necessary, including cDC1-intrinsic signalling by STAT1 and IFN-gamma but not type I IFN (IFN-I). cDC1 and IFNs promoted CD4(+) and CD8(+) T-cell infiltration, terminal differentiation and effector functions. In breast cancer patients, high intratumor expression of genes specific to cDC1, CTLs, CD4(+) T cells or IFN responses is associated with a better prognosis. Conclusion. Interferons and cDC1 are critical for breast cancer immunosurveillance. IFN-gamma plays a prominent role over IFN-I in licensing cDC1 for efficient T-cell activation.
引用
收藏
页数:19
相关论文
共 95 条
[1]   Lack of Il12rb2 signaling predisposes to,spontaneous autoimmunity and malignancy [J].
Airoldi, I ;
Di Carlo, E ;
Cocco, C ;
Sorrentino, C ;
Fais, F ;
Cilli, M ;
D'Antuono, T ;
Colombo, MP ;
Pistoia, V .
BLOOD, 2005, 106 (12) :3846-3853
[2]   XCR1+ dendritic cells promote memory CD8+ T cell recall upon secondary infections with Listeria monocytogenes or certain viruses [J].
Alexandre, Yannick O. ;
Ghilas, Sonia ;
Sanchez, Cindy ;
Le Bon, Agnes ;
Crozat, Karine ;
Dalod, Marc .
JOURNAL OF EXPERIMENTAL MEDICINE, 2016, 213 (01) :75-92
[3]   BATF3 programs CD8+T cell memory [J].
Ataide, Marco A. ;
Komander, Karl ;
Knoepper, Konrad ;
Peters, Annika E. ;
Wu, Hao ;
Eickhoff, Sarah ;
Gogishvili, Tea ;
Weber, Justus ;
Grafen, Anika ;
Kallies, Axel ;
Garbi, Natalio ;
Einsele, Hermann ;
Hudecek, Michael ;
Gasteiger, Georg ;
Hoelzel, Michael ;
Vaeth, Martin ;
Kastenmueller, Wolfgang .
NATURE IMMUNOLOGY, 2020, 21 (11) :1397-+
[4]   Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells [J].
Bachem, Annabell ;
Guettler, Steffen ;
Hartung, Evelyn ;
Ebstein, Frederic ;
Schaefer, Michael ;
Tannert, Astrid ;
Salama, Abdulgabar ;
Movassaghi, Kamran ;
Opitz, Corinna ;
Mages, Hans W. ;
Henn, Volker ;
Kloetzel, Peter-Michael ;
Gurka, Stephanie ;
Kroczek, Richard A. .
JOURNAL OF EXPERIMENTAL MEDICINE, 2010, 207 (06) :1273-1281
[5]   Avirulent Toxoplasma gondii Generates Therapeutic Antitumor Immunity by Reversing Immunosuppression in the Ovarian Cancer Microenvironment [J].
Baird, Jason R. ;
Fox, Barbara A. ;
Sanders, Kiah L. ;
Lizotte, Patrick H. ;
Cubillos-Ruiz, Juan R. ;
Scarlett, Uciane K. ;
Rutkowski, Melanie R. ;
Conejo-Garcia, Jose R. ;
Fiering, Steven ;
Bzik, David J. .
CANCER RESEARCH, 2013, 73 (13) :3842-3851
[6]   Immune-Mediated Regression of Established B16F10 Melanoma by Intratumoral Injection of Attenuated Toxoplasma gondii Protects against Rechallenge [J].
Baird, Jason R. ;
Byrne, Katelyn T. ;
Lizotte, Patrick H. ;
Toraya-Brown, Seiko ;
Scarlett, Uciane K. ;
Alexander, Matthew P. ;
Sheen, Mee Rie ;
Fox, Barbara A. ;
Bzik, David J. ;
Bosenberg, Marcus ;
Mullins, David W. ;
Turk, Mary Jo ;
Fiering, Steven .
JOURNAL OF IMMUNOLOGY, 2013, 190 (01) :469-478
[7]   Unexplored horizons of cDC1 in immunity and tolerance [J].
Balan, Sreekumar ;
Radford, Kristen J. ;
Bhardwaj, Nina .
ADVANCES IN IMMUNOLOGY, VOL 148, 2020, 148 :49-91
[8]   Dual PD-1 and CTLA-4 Checkpoint Blockade Promotes Antitumor Immune Responses through CD4+Foxp3- Cell-Mediated Modulation of CD103+ Dendritic Cells [J].
Beavis, Paul A. ;
Henderson, Melissa A. ;
Giuffrida, Lauren ;
Davenport, Alexander J. ;
Petley, Emma V. ;
House, Imran G. ;
Lai, Junyun ;
Sek, Kevin ;
Milenkovski, Nicole ;
John, Liza B. ;
Mardiana, Sherly ;
Slaney, Clare Y. ;
Trapani, Joseph A. ;
Loi, Sherene ;
Kershaw, Michael H. ;
Haynes, Nicole M. ;
Darcy, Phillip K. .
CANCER IMMUNOLOGY RESEARCH, 2018, 6 (09) :1069-1081
[9]   Heterodimeric IL-15 delays tumor growth and promotes intratumoral CTL and dendritic cell accumulation by a cytokine network involving XCL1, IFN-γ, CXCL9 and CXCL10 [J].
Bergamaschi, Cristina ;
Pandit, Hrishikesh ;
Nagy, Bethany A. ;
Stellas, Dimitris ;
Jensen, Shawn M. ;
Bear, Jenifer ;
Cam, Maggie ;
Valentin, Antonio ;
Fox, Bernard A. ;
Felber, Barbara K. ;
Pavlakis, George N. .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2020, 8 (01)
[10]   Flt3 ligand augments immune responses to anti-DEC-205-NY-ESO-1 vaccine through expansion of dendritic cell subsets [J].
Bhardwaj, Nina ;
Friedlander, Philip A. ;
Pavlick, Anna C. ;
Ernstoff, Marc S. ;
Gastman, Brian R. ;
Hanks, Brent A. ;
Curti, Brendan D. ;
Albertini, Mark R. ;
Luke, Jason J. ;
Blazquez, Ana B. ;
Balan, Sreekumar ;
Bedognetti, Davide ;
Beechem, Joseph M. ;
Crocker, Andrea S. ;
D'Amico, Leonard ;
Danaher, Patrick ;
Davis, Thomas A. ;
Hawthorne, Thomas ;
Hess, Bruce W. ;
Keler, Tibor ;
Lundgren, Lisa ;
Morishima, Chihiro ;
Ramchurren, Nirasha ;
Rinchai, Darawan ;
Salazar, Andres M. ;
Salim, Bob A. ;
Sharon, Elad ;
Vitale, Laura A. ;
Wang, Ena ;
Warren, Sarah ;
Yellin, Michael J. ;
Disis, Mary L. ;
Cheever, Martin A. ;
Fling, Steven P. .
NATURE CANCER, 2020, 1 (12) :1204-+