Elastomeric nanocomposites as cell delivery vehicles and cardiac support devices

被引:56
作者
Chen, Qizhi [1 ,2 ]
Jin, Liyu [1 ]
Cook, Wayne D. [1 ]
Mohn, Dirk [3 ]
Lagerqvist, Ebba L. [4 ]
Elliott, David A. [5 ]
Haynes, John M. [4 ]
Boyd, Nicholas [1 ]
Stark, Wendelin J. [3 ]
Pouton, Colin W. [4 ]
Stanley, Edouard G. [5 ]
Elefanty, Andrew G. [5 ]
机构
[1] Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia
[2] Monash Univ, Div Bioengn, Clayton, Vic 3800, Australia
[3] ETH, Inst Chem & Bioengn, Dept Chem & Appl Biosci, CH-8093 Zurich, Switzerland
[4] Monash Univ, Monash Inst Pharmaceut Sci, Parkville, Vic 3052, Australia
[5] Monash Univ, Monash Immunol & Stem Cell Labs, Clayton, Vic 3800, Australia
基金
澳大利亚国家健康与医学研究理事会;
关键词
HEART-FAILURE; BOUND RUBBER; TISSUE; BIOCERAMICS; BIOMATERIALS; SPECTROSCOPY; DEGRADATION; RECOVERY; OLEATE;
D O I
10.1039/c0sm00213e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new family of elastomeric nanocomposites has been developed from a soft elastomer poly(glycerol sebacate, PGS) and nanoparticles of Bioglass (R). The new nanocomposites have been characterised in terms of materials science and evaluated for their potential clinical applications as cell delivery vehicles and cardiac support devices in the heart patch strategy. The addition of alkaline Bioglass (R) effectively counteracts the acidity caused by the degradation of PGS without severely compromising the compliance of PGS. As a result, the newly developed PGS-nanoBioglass (<5 wt%) composites have a greatly improved biocompatibility, compared to PGS, and remain mechanically compatible with heart muscle. The interaction between PGS and Bioglass (R) and the reinforcement of the PGS polymer network by the nanoBioglass (R) particles have also been explored in depth.
引用
收藏
页码:4715 / 4726
页数:12
相关论文
共 44 条
[1]  
ANDY HT, 2010, ENCY POLYM SCI TECHN
[2]  
ARMSTRONG RW, 1969, ENCY POLYM SCI TECHN, P822
[3]   The pathophysiology of advanced heart failure (Reprinted from Am Heart J, vol 135, pg S216-S230, 1998) [J].
Baig, MK ;
Mahon, N ;
McKenna, WJ ;
Caforio, ALP ;
Bonow, RO ;
Francis, GS ;
Gheorghiade, M .
HEART & LUNG, 1999, 28 (02) :87-101
[4]   Bioceramics: Past, present and for the future [J].
Best, S. M. ;
Porter, A. E. ;
Thian, E. S. ;
Huang, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2008, 28 (07) :1319-1327
[5]   Biodegradable xylitol-based polymers [J].
Bruggeman, Joost P. ;
Bettinger, Christopher J. ;
Nijst, Christiaan L. E. ;
Kohane, Daniel S. ;
Langer, Robert .
ADVANCED MATERIALS, 2008, 20 (10) :1922-+
[6]  
BURNS DK, 2003, ROBBINS BASIC PATHOL, P361
[7]   Controlled degradation of epoxy networks: analysis of crosslink density and glass transition temperature changes in thermally reworkable thermosets [J].
Chen, JS ;
Ober, CK ;
Poliks, MD ;
Zhang, YM ;
Wiesner, U ;
Cohen, C .
POLYMER, 2004, 45 (06) :1939-1950
[8]   Biomaterials in cardiac tissue engineering: Ten years of research survey [J].
Chen, Qi-Zhi ;
Harding, Sian E. ;
Ali, Nadire N. ;
Lyon, Alexander R. ;
Boccaccini, Aldo R. .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2008, 59 (1-6) :1-37
[9]   Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue [J].
Chen, Qi-Zhi ;
Bismarck, Alexander ;
Hansen, Ulrich ;
Junaid, Sarah ;
Tran, Michael Q. ;
Harding, Sian E. ;
Ali, Nadire N. ;
Boccaccini, Aldo R. .
BIOMATERIALS, 2008, 29 (01) :47-57
[10]   An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart [J].
Chen, Qi-Zhi ;
Ishii, Hikaru ;
Thouas, George A. ;
Lyon, Alexander R. ;
Wright, Jamie S. ;
Blaker, Jonny J. ;
Chrzanowski, Wojciech ;
Boccaccini, Aldo R. ;
Ali, Nadire N. ;
Knowles, Jonathan C. ;
Harding, Sian E. .
BIOMATERIALS, 2010, 31 (14) :3885-3893