Industrial data science - a review of machine learning applications for chemical and process industries

被引:43
作者
Mowbray, Max [1 ]
Vallerio, Mattia [2 ]
Perez-Galvan, Carlos [2 ]
Zhang, Dongda [1 ,3 ]
Chanona, Antonio Del Rio [3 ]
Navarro-Brull, Francisco J. [2 ,3 ]
机构
[1] Univ Manchester, Manchester M13 9PL, Lancs, England
[2] Solvay SA, Rue Ransbeek 310, B-1120 Brussels, Belgium
[3] Imperial Coll London, London SW7 2AZ, England
来源
REACTION CHEMISTRY & ENGINEERING | 2022年 / 7卷 / 07期
关键词
MODEL-PREDICTIVE CONTROL; MODIFIER-ADAPTATION METHODOLOGY; REAL-TIME OPTIMIZATION; NEURAL-NETWORKS; BATCH PROCESSES; DEAD-TIME; ROBUST IDENTIFICATION; VARIABLE SELECTION; EXPERIMENT DESIGN; INVERSE PROBLEMS;
D O I
10.1039/d1re00541c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the literature, machine learning (ML) and artificial intelligence (AI) applications tend to start with examples that are irrelevant to process engineers (e.g. classification of images between cats and dogs, house pricing, types of flowers, etc.). However, process engineering principles are also based on pseudo-empirical correlations and heuristics, which are a form of ML. In this work, industrial data science fundamentals will be explained and linked with commonly-known examples in process engineering, followed by a review of industrial applications using state-of-art ML techniques.
引用
收藏
页码:1471 / 1509
页数:39
相关论文
共 281 条
  • [1] Abdar M., 2020, PREPRINT ARXIV201106
  • [2] Design and Applications of Soft Sensors in Polymer Processing: A Review
    Abeykoon, Chamil
    [J]. IEEE SENSORS JOURNAL, 2019, 19 (08) : 2801 - 2813
  • [3] Achiam J., 2017, ARXIV PREPRINT 17051
  • [4] Artificial bee colony algorithm for large-scale problems and engineering design optimization
    Akay, Bahriye
    Karaboga, Dervis
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2012, 23 (04) : 1001 - 1014
  • [5] Optuna: A Next-generation Hyperparameter Optimization Framework
    Akiba, Takuya
    Sano, Shotaro
    Yanase, Toshihiko
    Ohta, Takeru
    Koyama, Masanori
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2623 - 2631
  • [6] CasADi: a software framework for nonlinear optimization and optimal control
    Andersson, Joel A. E.
    Gillis, Joris
    Horn, Greg
    Rawlings, James B.
    Diehl, Moritz
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) : 1 - 36
  • [7] Real-time optimization of wind farms using modifier adaptation and machine learning
    Andersson, Leif Erik
    Imsland, Lars
    [J]. WIND ENERGY SCIENCE, 2020, 5 (03) : 885 - 896
  • [8] Andrychowicz M., 2017, arXiv
  • [9] [Anonymous], 2015, IND 4 0 NAVIGATE DIG
  • [10] [Anonymous], 2020, POTENTIAL ADV PROCES