MobileSR: Efficient Convolutional Neural Network for Super-resolution

被引:0
作者
Zhang, Lulu [1 ,2 ,3 ]
Li, HuiYong [1 ,2 ,3 ]
Liu, Xuefeng [1 ,2 ,3 ]
Niu, Jianwei [1 ,2 ,3 ]
Wu, Jiyan [1 ,2 ,3 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
[2] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp BDB, Beijing, Peoples R China
[3] Beihang Univ, Hangzhou Innovat Res Inst, Beijing, Peoples R China
来源
2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM) | 2020年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Parallel-group convolution; light-weight network; super-resolution;
D O I
10.1109/GLOBECOM42002.2020.9322623
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The existing deep CNN models on single image super-resolution processing are computationally-intensive in terms of memory usage and training time. In resources-limited platforms, it is desirable to consider developing lightweight models for super-resolution tasks. This paper proposes a parallel-group convolution, which uses 25% computation of the standard convolutions. With parallel-group convolutions, we develop an efficient light-weight convolutional neural network named MobileSR for super-resolution. Experimental results show that our proposed method achieves appreciable improvements over the state-of-the-art models with approximately 75% size reduction. The source code is available at https://github.com/DestinyK/MobileSR.
引用
收藏
页数:6
相关论文
共 22 条
[1]  
[Anonymous], 2016, PROCEEDINGS, DOI DOI 10.1109/CVPR.2016.90
[2]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[3]   Second-order Attention Network for Single Image Super-Resolution [J].
Dai, Tao ;
Cai, Jianrui ;
Zhang, Yongbing ;
Xia, Shu-Tao ;
Zhang, Lei .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11057-11066
[4]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[5]  
Howard A. G., 2017, ARXIV
[6]   Meta-SR: A Magnification-Arbitrary Network for Super-Resolution [J].
Hu, Xuecai ;
Mu, Haoyuan ;
Zhang, Xiangyu ;
Wang, Zilei ;
Tan, Tieniu ;
Sun, Jian .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1575-1584
[7]   Fast and Accurate Single Image Super-Resolution via Information Distillation Network [J].
Hui, Zheng ;
Wang, Xiumei ;
Gao, Xinbo .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :723-731
[8]  
Iandola F.N., 2016, SQUEEZENET ALEXNET L
[9]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
[10]   Enhanced Deep Residual Networks for Single Image Super-Resolution [J].
Lim, Bee ;
Son, Sanghyun ;
Kim, Heewon ;
Nah, Seungjun ;
Lee, Kyoung Mu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1132-1140