High-Sensitive Mid-Infrared Photonic Crystal Sensor Using Slotted-Waveguide Coupled-Cavity

被引:0
作者
Tayoub, Hadjira [1 ,2 ]
Hocini, Abdesselam [1 ]
Harhouz, Ahlam [1 ]
机构
[1] Univ Msila, Dept Elect, Lab Anal Signaux & Syst, BP 166,Route Ichebilia, Msila 28000, Malta
[2] Res Ctr Ind Technol CRTI, POB 64, Algiers 16014, Algeria
来源
PROGRESS IN ELECTROMAGNETICS RESEARCH M | 2021年 / 105卷
关键词
SILICON-ON-SAPPHIRE; DESIGN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a novel high-sensitive mid-infrared photonic crystal-based slotted-waveguide coupled-cavity sensor to behave as a refractive index sensing device is proposed at a mid-infrared wavelength of 3.9 mu m. We determine the sensitivity of our sensor by detecting the shift in the resonance wavelength as a function of the refractive index variations in the region around the cavity. Comparison shows that mid-infrared photonic crystal-based slotted-waveguide coupled-cavity has higher sensitivity to refractive index changes than mid-infrared photonic crystal-based slotted-waveguide. The sensitivity can be improved from 938 nm/per refractive index unit (RIU) to 1161 nm/RIU within the range of n = 1-1.05 with an increment of 0.01 RIU in the wavelength range of 3.3651 mu m to 4.1198 mu m by creating a microcavity within the proposed structure, calculated quality factor (Q-factor) of 1.0821 x 107 giving a sensor figure of merit (FOM) up to 2.917x10(6), and a low detection limit of 3.9x10(-6) RIU. Furthermore, an overall sensitivity is calculated to be around S = 1343.2 nm/RIU for the case of higher refractive indices of analytes within the range of n = 1-1.2 with an increment of 0.05 RIU. The described work and the achieved results by performing 2D-finite-difference time-domain (2D-FDTD) simulations confirm the ability to realize a commercially viable miniaturized and highly sensitive mid-infrared photonic crystal based slotted-waveguide coupled-cavity sensor.
引用
收藏
页码:45 / 54
页数:10
相关论文
共 46 条
  • [1] Guiding and confining light in void nanostructure
    Almeida, VR
    Xu, QF
    Barrios, CA
    Lipson, M
    [J]. OPTICS LETTERS, 2004, 29 (11) : 1209 - 1211
  • [2] Slot-waveguide biochemical sensor
    Barrios, Carlos A.
    Gylfason, Kristinn B.
    Sanchez, Benito
    Griol, Amadeu
    Sohlstroem, H.
    Holgado, M.
    Casquel, R.
    [J]. OPTICS LETTERS, 2007, 32 (21) : 3080 - 3082
  • [3] Strain Sensitive Effect in a Triangular Lattice Photonic Crystal Hole-Modified Nanocavity
    Bui Thanh Tung
    Hoang Minh Nguyen
    Dzung Viet Dao
    Rogge, Sven
    Salemink, Huub W. M.
    Sugiyama, Susumu
    [J]. IEEE SENSORS JOURNAL, 2011, 11 (11) : 2657 - 2663
  • [4] Dispersion control and slow light in slotted photonic crystal waveguides
    Gupta, Dhritiman
    Bag, Monojit
    Narayan, K. S.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (08)
  • [5] Photonic crystal slotted slab waveguides
    Di Falco, A.
    O'Faolain, L.
    Krauss, T. F.
    [J]. PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2008, 6 (01) : 38 - 41
  • [6] Di Falco A., 2011, APPL PHYS LETT, P6
  • [7] Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing
    Dutta, Hemant Sankar
    Pal, Suchandan
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2013, 45 (09) : 907 - 917
  • [8] Elshahat S., NANOMATERIALS-BASEL, V11, P2021
  • [9] High-Speed Electro-Optic Modulator Integrated with Graphene-Boron Nitride Heterostructure and Photonic Crystal Nanocavity
    Gao, Yuanda
    Shiue, Ren-Jye
    Gan, Xuetao
    Li, Luozhou
    Peng, Cheng
    Meric, Inanc
    Wang, Lei
    Szep, Attila
    Walker, Dennis, Jr.
    Hone, James
    Englund, Dirk
    [J]. NANO LETTERS, 2015, 15 (03) : 2001 - 2005
  • [10] Ultra-compact channel drop filter based on photonic crystal nanobeam cavities utilizing a resonant tunneling effect
    Ge, Xiaochen
    Shi, Yaocheng
    He, Sailing
    [J]. OPTICS LETTERS, 2014, 39 (24) : 6973 - 6976