Spectral continuity for aperiodic quantum systems I. General theory

被引:26
作者
Beckus, Siegfried [1 ]
Bellissard, Jean [2 ,3 ]
De Nittis, Giuseppe [4 ,5 ]
机构
[1] Technion Israel Inst Technol, Dept Math, Haifa, Israel
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[3] Westfalische Wilhelms Univ, Fachbereich Mathemat & Informat 10, Munster, Germany
[4] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
[5] Pontificia Univ Catolica Chile, Inst Fis, Santiago, Chile
基金
美国国家科学基金会;
关键词
Aperiodic quantum systems; Spectral approximation; Dynamical systems; Tautological groupoid; C-ASTERISK-ALGEBRAS; PATTERN-EQUIVARIANT FUNCTIONS; DEFORMATION QUANTIZATION; SCHRODINGER-EQUATION; ELECTRONIC-SPECTRUM; OPERATOR-ALGEBRAS; QUASI-CRYSTALS; GROUPOIDS; RENORMALIZATION; FIELDS;
D O I
10.1016/j.jfa.2018.09.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
How does the spectrum of a Schrodinger operator vary if the corresponding geometry and dynamics change? Is it possible to define approximations of the spectrum of such operators by defining approximations of the underlying structures? In this work a positive answer is provided using the rather general setting of groupoid C*-algebras. A characterization of the convergence of the spectra by the convergence of the underlying structures is proved. In order to do so, the concept of continuous field of groupoids is slightly extended by adding continuous fields of cocycles. With this at hand, magnetic Schrodinger operators on dynamical systems or Delone systems fall into this unified setting. Various approximations used in computational physics, like the periodic or the finite cluster approximations, are expressed through the tautological groupoid, which provides a universal model for fields of groupoids. The use of the Hausdorff topology turns out to be fundamental in understanding why and how these approximations work. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:2917 / 2977
页数:61
相关论文
共 112 条
[11]   The Ten Martini Problem [J].
Avila, Artur ;
Jitomirskaya, Svetlana .
ANNALS OF MATHEMATICS, 2009, 170 (01) :303-342
[12]  
Barnsley MF., 2014, Fractals Everywhere
[13]  
Beckus S., 2016, Spectral approximation of aperiodic Schrodinger operators
[14]   Continuity of the Spectrum of a Field of Self-Adjoint Operators [J].
Beckus, Siegfried ;
Bellissard, Jean .
ANNALES HENRI POINCARE, 2016, 17 (12) :3425-3442
[15]  
Bellissard J., 1986, Statistical Mechanics and Field Theory: Mathematical Aspects. Proceedings of the International Conference, P99
[16]   SPECTRAL PROPERTIES OF ONE DIMENSIONAL QUASI-CRYSTALS [J].
BELLISSARD, J ;
IOCHUM, B ;
SCOPPOLA, E ;
TESTARD, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 125 (03) :527-543
[17]   SPECTRAL PROPERTIES OF A TIGHT-BINDING HAMILTONIAN WITH PERIOD DOUBLING POTENTIAL [J].
BELLISSARD, J ;
BOVIER, A ;
GHEZ, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 135 (02) :379-399
[18]   CONTINUITY PROPERTIES OF THE ELECTRONIC-SPECTRUM OF 1D QUASI-CRYSTALS [J].
BELLISSARD, J ;
IOCHUM, B ;
TESTARD, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 141 (02) :353-380
[19]  
Bellissard J., 1993, From Number Theory to Physics. Les Houches March, V89, P538
[20]   Tiling Groupoids and Bratteli Diagrams [J].
Bellissard, Jean ;
Julien, Antoine ;
Savinien, Jean .
ANNALES HENRI POINCARE, 2010, 11 (1-2) :69-99