Ligand-independent activation of steroid hormone receptors

被引:266
作者
Weigel, NL [1 ]
Zhang, YX [1 ]
机构
[1] Baylor Coll Med, Dept Cell Biol, Houston, TX 77030 USA
来源
JOURNAL OF MOLECULAR MEDICINE-JMM | 1998年 / 76卷 / 07期
关键词
ligand-independent; estrogen receptor; progesterone receptor; androgen receptor; phosphorylation;
D O I
10.1007/s001090050241
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In addition to the conventional hormone-dependent regulation of the activity of steroid/thyroid receptor family members, many studies have shown that there is substantial cross-talk between signal transduction pathways and steroid receptors. In a number of cases the modulation of kinase/phosphatase activity in cells leads to activation of steroid receptors in the absence of hormone. This novel mechanism may not be ubiquitous as the glucocorticoid receptor appears to be refractory to activation in the absence of hormone. However, estrogen receptors, progesterone receptors, androgen receptors, retinoic acid receptors, retinoid X receptors, and vitamin D receptors all exhibit ligand-independent activation under appropriate conditions. Whether a steroid receptor responds to a signal by inducing transcription of a target gene in the absence of hormone depends upon the cell type, promoter, and activator. The mechanism(s) by which Ligand-independent activation is induced is currently a subject of great interest. Because the signals that activate receptors induce protein phosphorylation, altered phosphorylation of the receptors, and/or proteins that associate with the receptors are Likely to be key to ligand-independent activation. In the case of the estrogen receptor there is good evidence that altered receptor phosphorylation plays a role in ligand-independent activation. Other likely targets are proteins in the heat shock protein complexes, corepressors, and/or coactivators of steroid receptors.
引用
收藏
页码:469 / 479
页数:11
相关论文
共 85 条
[1]   IN-VIVO AND IN-VITRO PHOSPHORYLATION OF THE HUMAN ESTROGEN-RECEPTOR [J].
ARNOLD, SF ;
OBOURN, JD ;
YUDT, MR ;
CARTER, TH ;
NOTIDES, AC .
JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1995, 52 (02) :159-171
[2]   AN ANTIESTROGEN - A PHOSPHOTYROSYL PEPTIDE THAT BLOCKS DIMERIZATION OF THE HUMAN ESTROGEN-RECEPTOR [J].
ARNOLD, SF ;
NOTIDES, AC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7475-7479
[3]   PROGESTERONE-RECEPTOR REGULATION IN UTERINE CELLS - STIMULATION BY ESTROGEN, CYCLIC ADENOSINE-3',5'-MONOPHOSPHATE, AND INSULIN-LIKE GROWTH FACTOR-I AND SUPPRESSION BY ANTIESTROGENS AND PROTEIN-KINASE INHIBITORS [J].
ARONICA, SM ;
KATZENELLENBOGEN, BS .
ENDOCRINOLOGY, 1991, 128 (04) :2045-2052
[4]   STIMULATION OF ESTROGEN RECEPTOR-MEDIATED TRANSCRIPTION AND ALTERATION IN THE PHOSPHORYLATION STATE OF THE RAT UTERINE ESTROGEN-RECEPTOR BY ESTROGEN, CYCLIC ADENOSINE-MONOPHOSPHATE, AND INSULIN-LIKE GROWTH FACTOR-I [J].
ARONICA, SM ;
KATZENELLENBOGEN, BS .
MOLECULAR ENDOCRINOLOGY, 1993, 7 (06) :743-752
[5]   Phosphorylation of Ser(211) in the chicken progesterone receptor modulates its transcriptional activity [J].
Bai, WL ;
Weigel, NL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (22) :12801-12806
[6]   PHOSPHORYLATION OF SER(530) FACILITATES HORMONE-DEPENDENT TRANSCRIPTIONAL ACTIVATION OF THE CHICKEN PROGESTERONE-RECEPTOR [J].
BAI, WL ;
TULLOS, S ;
WEIGEL, NL .
MOLECULAR ENDOCRINOLOGY, 1994, 8 (11) :1465-1473
[7]  
Bai WL, 1997, J BIOL CHEM, V272, P10457
[8]   Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1 [J].
Baur, EV ;
Zechel, C ;
Heery, D ;
Heine, MJS ;
Garnier, JM ;
Vivat, V ;
LeDouarin, B ;
Gronemeyer, H ;
Chambon, P ;
Losson, R .
EMBO JOURNAL, 1996, 15 (01) :110-124
[9]   DNA REGULATORY ELEMENTS FOR STEROID-HORMONES [J].
BEATO, M ;
CHALEPAKIS, G ;
SCHAUER, M ;
SLATER, EP .
JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1989, 32 (05) :737-748
[10]   EFFECTS OF HORMONE AND CELLULAR MODULATORS OF PROTEIN-PHOSPHORYLATION ON TRANSCRIPTIONAL ACTIVITY, DNA-BINDING, AND PHOSPHORYLATION OF HUMAN PROGESTERONE RECEPTORS [J].
BECK, CA ;
WEIGEL, NL ;
EDWARDS, DP .
MOLECULAR ENDOCRINOLOGY, 1992, 6 (04) :607-620