Entanglement of formation for one-dimensional magnetic systems with defects

被引:29
作者
Huang, Z [1 ]
Osenda, O [1 ]
Kais, S [1 ]
机构
[1] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
关键词
entanglement of formation; magnetic systems; defects;
D O I
10.1016/j.physleta.2004.01.022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a study of the entanglement of formation for one-dimensional magnetic systems with defects. The concurrence was used as a measure of entanglement. Rather than locating the impurity at one site in the chain, there is a Gaussian. distribution of disorder near a particular location. We demonstrate that the entanglement can be tuned by varying the strength of the external magnetic field and the distribution of impurities. The concurrence is a maximum close to the critical point, where a quantum phase transition occurs, and for certain parameters can be tuned to zero above the critical point. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 26 条
[1]  
[Anonymous], 2000, QUANTUM COMPUTATION
[2]   Natural thermal and magnetic entanglement in the 1D Heisenberg model [J].
Arnesen, MC ;
Bose, S ;
Vedral, V .
PHYSICAL REVIEW LETTERS, 2001, 87 (01)
[3]   Universal fault-tolerant quantum computation on decoherence-free subspaces [J].
Bacon, D ;
Kempe, J ;
Lidar, DA ;
Whaley, KB .
PHYSICAL REVIEW LETTERS, 2000, 85 (08) :1758-1761
[4]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[5]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[6]   Quantum information and computation [J].
Bennett, CH ;
DiVincenzo, DP .
NATURE, 2000, 404 (6775) :247-255
[7]   Push-button entanglement [J].
Blatt, R .
NATURE, 2000, 404 (6775) :231-232
[8]   Experimental quantum teleportation [J].
Bouwmeester, D ;
Pan, JW ;
Mattle, K ;
Eibl, M ;
Weinfurter, H ;
Zeilinger, A .
NATURE, 1997, 390 (6660) :575-579
[9]   QUANTUM COMPUTATION [J].
DIVINCENZO, DP .
SCIENCE, 1995, 270 (5234) :255-261
[10]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780