Thermoelectric and Magnetic Properties of Pr1-xSrxMnO3 (0.1 ≤ x ≤ 0.7)

被引:8
作者
Nakatsugawa, Hiroshi [1 ]
Kubota, Masaki [1 ]
Saito, Miwa [2 ]
机构
[1] Yokohama Natl Univ, Grad Sch Engn, Yokohama, Kanagawa 2408501, Japan
[2] Kanagawa Univ, Dept Mat & Life Chem, Fac Engn, Yokohama, Kanagawa 2218686, Japan
关键词
thermoelectric properties; magnetic properties; adiabatic small polaron conduction; double exchange interaction; Jahn-Teller distortion; Heikes formula; TRANSPORT-PROPERTIES; MAGNETORESISTANCE; PERFORMANCE; TRANSITION; SIZE; NB;
D O I
10.2320/matertrans.E-M2015807
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, polycrystalline samples of Pr1-xSrxMnO3 (0.1 <= x <= 0.7) were synthesized using a conventional solid-state reaction method. We investigated crystal structure, magnetic susceptibility (chi), and thermoelectric properties, such as electrical resistivity (rho), Seebeck coefficient (S), and thermal conductivity (kappa), as a function of temperature (T) or Sr content (x). The crystal structure at room temperature changed from orthorhombic Pbnm phases, with x <= 0.4, to tetragonal I4/mcm phases, with x >= 0.5. The samples for x <= 0.5 showed the ferromagnetic-like ground state below Curie temperature. Conversely, the samples for x = 0.5, 0.6, and 0.7 showed the charge-ordering ground state below 160 K, the A-type antiferromagnetic ground state below 310 K, and the C-type antiferromagnetic ground state below 318 K, respectively. Above room temperature, all the samples exhibited adiabatic small polaron conduction in a competition between the double exchange interaction and the Jahn-Teller distortion. Although the samples for x = 0.1 and 0.2 showed a large positive S below room temperature, the carrier type changed from hole-like to electron-like behavior above 1000K and 500 K, respectively. Thus, all the samples for 0.1 <= x <= 0.7 showed a negative S at a high temperature. The largest dimensionless figure of merit (ZT) of all the samples above room temperature was 0.085 at 1073K for x = 0.7, by a decrease in both rho and lattice kappa, and an increase in S. In addition, we obtained the largest ZT in the p-type specimens for x = 0.1, thus, attaining a maximum value of 0.0035 at 468 K. We discuss this behavior in terms of the potentiality to fabricate the oxide thermoelectric modules consisting of the same type of elements.
引用
收藏
页码:864 / 871
页数:8
相关论文
共 35 条
[1]   POLARONS IN CRYSTALLINE AND NON-CRYSTALLINE MATERIALS [J].
AUSTIN, IG ;
MOTT, NF .
ADVANCES IN PHYSICS, 1969, 18 (71) :41-+
[2]   CaMn1-xNbxO3 (x ≤ 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials [J].
Bocher, L. ;
Aguirre, M. H. ;
Logvinovich, D. ;
Shkabko, A. ;
Robert, R. ;
Trottmann, M. ;
Weidenkaff, A. .
INORGANIC CHEMISTRY, 2008, 47 (18) :8077-8085
[3]   Structural and magnetic phase diagrams of La1-xSrxMnO3 and Pr1-ySryMnO3 -: art. no. 094431 [J].
Chmaissem, O ;
Dabrowski, B ;
Kolesnik, S ;
Mais, J ;
Jorgensen, JD ;
Short, S .
PHYSICAL REVIEW B, 2003, 67 (09)
[4]   High-temperature thermoelectric properties of Ca1-xPrxMnO3-δ (0 ≤ x &lt; 1) [J].
Cong, BT ;
Tsuji, T ;
Thao, PX ;
Thanh, PQ ;
Yamamura, Y .
PHYSICA B-CONDENSED MATTER, 2004, 352 (1-4) :18-23
[5]   STUDIES OF SMALL-POLARON MOTION .4. ADIABATIC THEORY OF HALL EFFECT [J].
EMIN, D ;
HOLSTEIN, T .
ANNALS OF PHYSICS, 1969, 53 (03) :439-&
[6]   Thermoelectrical properties of A-site substituted Ca1-xRexMnO3 system [J].
Flahaut, D. ;
Mihara, T. ;
Funahashi, R. ;
Nabeshima, N. ;
Lee, K. ;
Ohta, H. ;
Koumoto, K. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (08)
[7]   A portable thermoelectric-power-generating module composed of oxide devices [J].
Funahashi, R ;
Mikami, M ;
Mihara, T ;
Urata, S ;
Ando, N .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (06)
[8]   Ca2.7Bi0.3Co4O9/La0.9Bi0.1NiO3 thermoelectric devices with high output power density [J].
Funahashi, R ;
Urata, S ;
Mizuno, K ;
Kouuchi, T ;
Mikami, M .
APPLIED PHYSICS LETTERS, 2004, 85 (06) :1036-1038
[9]   The laws of crystal chemistry [J].
Goldschmidt, VM .
NATURWISSENSCHAFTEN, 1926, 14 :477-485
[10]  
Heikes R.R., 1961, Thermoelectricity: Science and Engineering (Interscience)