Boundary asymptotic analysis for an incompressible viscous flow: Navier wall laws

被引:3
|
作者
El Jarroudi, M. [2 ]
Brillard, A. [1 ]
机构
[1] Univ Haute Alsace, Lab Gest Risques & Environm, F-68200 Mulhouse, France
[2] Univ Abdelmalek Essaadi, Dept Math, FST Tanger, Tanger, Morocco
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2008年 / 57卷 / 03期
关键词
Navier law; Navier-Stokes flow; Gamma-convergence; asymptotic behaviour; optimal control problem;
D O I
10.1007/s00245-007-9026-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a new way of establishing Navier wall laws. Considering a bounded domain Omega of R(N), N=2,3, surrounded by a thin layer Sigma(epsilon) , along a part Gamma(2) of its boundary partial derivative Omega, we consider a Navier-Stokes flow in Omega boolean OR partial derivative Omega boolean OR Sigma(epsilon) with Reynolds' number of order 1/epsilon in Sigma(epsilon). Using Gamma-convergence arguments, we describe the asymptotic behaviour of the solution of this problem and get a general Navier law involving a matrix of Borel measures having the same support contained in the interface Gamma(2). We then consider two special cases where we characterize this matrix of measures. As a further application, we consider an optimal control problem within this context.
引用
收藏
页码:371 / 400
页数:30
相关论文
共 50 条