Boundary asymptotic analysis for an incompressible viscous flow: Navier wall laws

被引:3
|
作者
El Jarroudi, M. [2 ]
Brillard, A. [1 ]
机构
[1] Univ Haute Alsace, Lab Gest Risques & Environm, F-68200 Mulhouse, France
[2] Univ Abdelmalek Essaadi, Dept Math, FST Tanger, Tanger, Morocco
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2008年 / 57卷 / 03期
关键词
Navier law; Navier-Stokes flow; Gamma-convergence; asymptotic behaviour; optimal control problem;
D O I
10.1007/s00245-007-9026-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a new way of establishing Navier wall laws. Considering a bounded domain Omega of R(N), N=2,3, surrounded by a thin layer Sigma(epsilon) , along a part Gamma(2) of its boundary partial derivative Omega, we consider a Navier-Stokes flow in Omega boolean OR partial derivative Omega boolean OR Sigma(epsilon) with Reynolds' number of order 1/epsilon in Sigma(epsilon). Using Gamma-convergence arguments, we describe the asymptotic behaviour of the solution of this problem and get a general Navier law involving a matrix of Borel measures having the same support contained in the interface Gamma(2). We then consider two special cases where we characterize this matrix of measures. As a further application, we consider an optimal control problem within this context.
引用
收藏
页码:371 / 400
页数:30
相关论文
共 50 条
  • [1] Boundary Asymptotic Analysis for an Incompressible Viscous Flow: Navier Wall Laws
    M. El Jarroudi
    A. Brillard
    Applied Mathematics and Optimization, 2008, 57 : 371 - 400
  • [2] Asymptotic analysis of an optimal control problem for a viscous incompressible fluid with Navier slip boundary conditions
    Gariboldi, Claudia
    Takahashi, Takeo
    ASYMPTOTIC ANALYSIS, 2022, 126 (3-4) : 379 - 399
  • [3] Isobaric Vortex Flow of a Viscous Incompressible Fluid with the Navier Boundary Condition
    Gorshkov, A. V.
    Prosviryakov, E. Yu.
    MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2018), 2018, 2053
  • [4] Navier wall law for nonstationary viscous incompressible flows
    Higalci, Mitsuo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (10) : 7358 - 7396
  • [5] Shape Sensitivity Analysis for a Viscous Flow with Navier Boundary Condition
    Chaima Bsaies
    Raja Dziri
    Applied Mathematics & Optimization, 2020, 81 : 349 - 382
  • [6] Shape Sensitivity Analysis for a Viscous Flow with Navier Boundary Condition
    Bsaies, Chaima
    Dziri, Raja
    APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 81 (02): : 349 - 382
  • [7] Asymptotic analysis of random boundary layers between two incompressible viscous fluid flows
    Brillard, Alain
    El Jarroudi, Mustapha
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (06): : 3357 - 3376
  • [8] ON THE MOTION OF VISCOUS INCOMPRESSIBLE FLUID FLOW: THE NAVIER - STOKES EQUATIONS
    Varnhorn, W.
    TOPICAL PROBLEMS OF FLUID MECHANICS 2018, 2018, : 315 - 324
  • [9] Asymptotic analysis of random boundary layers between two incompressible viscous fluid flows
    Alain Brillard
    Mustapha El Jarroudi
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 3357 - 3376
  • [10] Unidirectional Thermocapillary Flows of a Viscous Incompressible Fluid with the Navier Boundary Condition
    Burmasheva, N. V.
    Prosviryakov, E. Yu.
    MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2019), 2019, 2176