Target detection in hyperspectral imagery using forward modeling and in-scene information

被引:19
作者
Axelsson, Maria [1 ]
Friman, Ola [1 ]
Haavardsholm, Trym Vegard [2 ]
Renhorn, Ingmar [1 ]
机构
[1] Swedish Def Res Agcy FOl, POB 1165, SE-58111 Linkoping, Sweden
[2] Norwegian Def Res Estab FFI, POB 25, NO-2021 Kjeller, Norway
关键词
Hyperspectral imaging; Forward modeling; Target detection; Rediscovery; Subspace matching; ATMOSPHERIC CORRECTION; NEVADA;
D O I
10.1016/j.isprsjprs.2016.05.008
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This work addresses the problem of detecting and classifying materials and targets in hyperspectral images based on their reflectance spectrum. Accurate target detection in hyperspectral imagery requires a radiative transfer model that maps between the spectral reflectance domain and the measured radiance domain. Such a model can be employed in two ways for detection - using atmospheric compensation, where the measured hyperspectral radiance image is converted to a reflectance image, and using forward modeling, where the target reflectance spectrum is converted to an at-sensor target radiance spectrum. This work presents a forward modeling detection method that utilizes in-scene information to estimate the parameters in the radiative transfer model. Uncertainty in the radiative transfer model and variability of the target spectra are captured using a constrained subspace model for the target. Target detection using library spectra and target rediscovery are evaluated in hyperspectral images of a complex urban scene. (C) 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:124 / 134
页数:11
相关论文
共 42 条
[1]  
[Anonymous], [No title captured]
[2]  
[Anonymous], 1974, Solving least squares problems
[3]  
[Anonymous], 2007, REMOTE SENSING IMAGE
[4]   Quality assessment of several methods to recover surface reflectance using synthetic imaging spectroscopy data [J].
Ben-Dor, E ;
Kindel, B ;
Goetz, AFH .
REMOTE SENSING OF ENVIRONMENT, 2004, 90 (03) :389-404
[5]  
Berk A., 1989, MODTRAN: A moderate resolution model for LOWTRAN 7
[6]  
Bernstein LS, 2005, INT GEOSCI REMOTE SE, P3549
[7]  
Bernstein LS, 2008, P SPIE REMOTE SENSIN
[8]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[9]  
Campbell J., 1993, P SPIE DIGITAL IMAGE, V1819
[10]   Constrained subpixel target detection for remotely sensed imagery [J].
Chang, CI ;
Heinz, DC .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (03) :1144-1159