Fractional Poisson equations and ergodic theorems for fractional coboundaries

被引:64
作者
Derriennic, Y [1 ]
Lin, M
机构
[1] Univ Bretagne Occidentale, Brest, France
[2] Ben Gurion Univ Negev, IL-84105 Beer Sheva, Israel
关键词
D O I
10.1007/BF02784121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given contraction T in a Banach space X and 0 < alpha < 1, we define the contraction T-alpha = Sigma (infinity)(j-1), a(j)T(j), where {a(j)) are the coefficients in the power series expansion (1 - t)(alpha) = 1 - Sigma (infinity)(j=1) a(j)t(j) in the open unit disk, which satisfy a(j) > 0 and Sigma (infinity)(j=1) a(j) = 1. The operator calculus justifies the notation (I - T)(alpha) := I - T-alpha (e.g., (I - T-1/2)(2) = I - T). A vector y is an element of X is called an a-fractional coboundary for T if there is an x is an element of X such that (I - T)(alpha)x = y, i.e., y is a coboundary for T-alpha. The fractional Poisson equation for T is the Poisson equation for T-alpha. We show that if (I - T)X is not closed, then (I - T)X-alpha strictly contains (I - T)X (but has the same closure). For T mean ergodic, we obtain a series solution (converging in norm) to the fractional Poisson equation. We prove that y is an element of X is an alpha -fractional coboundary if and only if Sigma (infinity)(k=1) T(k)y/k(1-alpha) converges in norm, and conclude that lim(n) \\(1/n(1-alpha)) Sigma (n)(k=1) T(k)y\\ = 0 for such y. For a Dunford-Schwartz operator T on L-1 of a probability space, we consider also a.e. convergence. We prove that if f is an element of (I - T)L-alpha(1) for some 0 < alpha < 1, then the one-sided Hilbert transform Sigma (infinity)(k=1) T-k f/k converges a.e. For 1 < p < infinity, we prove that if f is an element of (I - T)L-alpha(p) with alpha > 1 - 1/p = 1/q, then Sigma (infinity)(k=1) T(k)f/k(1/p) converges a.e., and thus (1/n(1/p)) Sigma (k=1) T-k f converges a.e. to zero. When f is an element of (I - T)(1/q) L-p (the case alpha = 1/q), we prove that (1/n(1/p)(log n)(1/q)) Sigma (k=1) T-k f converges a.e. to zero.
引用
收藏
页码:93 / 130
页数:38
相关论文
共 34 条
[1]  
ASSANI I, 1998, WIENER WINTNER DYNAM
[2]  
ASSANI I, 1999, PROPERTIES WIENER WI
[3]  
BORODIN AN, 1994, P STEKLOV I MATH, V195
[4]   REARRANGEMENT, MAXIMAL INEQUALITIES AND FRACTIONAL ERGODIC-THEOREMS [J].
BROISE, M ;
DENIEL, Y ;
DERRIENNIC, Y .
ANNALES DE L INSTITUT FOURIER, 1989, 39 (03) :689-714
[5]  
BRUNEL A, 1973, PROBABILITIES STAT, V9, P327
[6]   MEAN ERGODIC THEOREM AND SATURATION [J].
BUTZER, PL ;
WESTPHAL, U .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1971, 20 (12) :1163-&
[7]   SPECTRAL-ANALYSIS OF THE ERGODIC HILBERT TRANSFORM [J].
CAMPBELL, JT .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1986, 35 (02) :379-390
[8]   COUNTEREXAMPLES IN ERGODIC THEORY AND NUMBER THEORY [J].
DELJUNCO, A ;
ROSENBLATT, J .
MATHEMATISCHE ANNALEN, 1979, 245 (03) :185-197
[9]  
DENIEL Y, 1989, J THEORET PROB, V2, P475
[10]  
Derriennic Y, 1996, CR ACAD SCI I-MATH, V323, P1053