A 1.1 G MAC/s sub-word-parallel digital signal process of for wireless communication applications

被引:5
作者
Huang, YH [1 ]
Ma, HP
Liou, ML
Chiueh, TD
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
[2] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 300, Taiwan
[3] Natl Taiwan Univ, Grad Inst Elect Engn, Taipei 10617, Taiwan
关键词
digital signal processor (DSP); sub-word parallelism; wireless communication;
D O I
10.1109/JSSC.2003.820861
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work proposes a communication digital signal processor (DSP) suitable for massive signal processing operations in orthogonal frequency division multiplexing (OFDM) and code-division multiple-access (CDMA) communication Systems. The OFDM-based IEEE, 802.11a wireless LAN transceiver and CDMA-based WCDMA uplink receiver are. simulated to evaluate the computation requirements of future communication systems. The architecture of the communication digital signal processor is established according to the computational complexity of these simulations. The proposed architecture supports basic butterfly operations, single/double-precision and real- and complex-valued multiplication-and-accumulation (MAC), squared error computation, and add-compare-select (ACS) operation. This butterfly/complex MAC architecture can greatly enhance the execution efficiency of operations often found in communication applications. The. processor chip is. fabricated using a 0.35-mum n-well one-poly four-metal MOS technology. The fabricated DSP chip reaches a speed of 1.1 G MAC/s when operating in the high-speed mode, and it achieves 4 M MAC/s/mW in the low-power mode.
引用
收藏
页码:169 / 183
页数:15
相关论文
共 23 条
[1]   A single-chip, 1.6-billion, 16-b MAC/s multiprocessor DSP [J].
Ackland, B ;
Anesko, A ;
Brinthaupt, D ;
Daubert, SJ ;
Kalavade, A ;
Knobloch, J ;
Micca, E ;
Moturi, M ;
Nicol, CJ ;
O'Neill, JH ;
Othmer, J ;
Säckinger, E ;
Singh, KJ ;
Sweet, J ;
Terman, CJ ;
Williams, J .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2000, 35 (03) :412-424
[2]  
AGARWALA S, 2002, IEEE INT SOL STAT CI, V2, P38
[3]   DSP16000: A high performance, low power dual-MAC DSP core for communications applications [J].
Alidina, M ;
Burns, G ;
Holmqvist, C ;
Morgan, E ;
Rhodes, D ;
Simanapalli, S ;
Thierbach, M .
IEEE 1998 CUSTOM INTEGRATED CIRCUITS CONFERENCE - PROCEEDINGS, 1998, :119-122
[4]  
Brigham E.O., 1988, The Fast Fourier Transform and Its Applications
[5]   Design of spread-spectrum sequences using chaotic dynamical systems and ergodic theory [J].
Chen, CC ;
Yao, K ;
Umeno, K ;
Biglieri, E .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2001, 48 (09) :1110-1114
[6]  
Chien-Fang Hsu, 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196), P558, DOI 10.1109/ISCAS.2001.922298
[7]  
DESPAIN AM, 1979, IEEE T COMPUT, V28, P333, DOI 10.1109/TC.1979.1675363
[8]   Sub-word parallelism in digital signal processing [J].
Fridman, J .
IEEE SIGNAL PROCESSING MAGAZINE, 2000, 17 (02) :27-35
[9]   Designing pipeline FFT processor for OFDM (de)modulation [J].
He, SS ;
Torkelson, M .
1998 URSI SYMPOSIUM ON SIGNALS, SYSTEMS, AND ELECTR ONICS, 1998, :257-262
[10]   A 1.3-GOPS parallel DSP for high-performance image-processing applications [J].
Hinrichs, W ;
Wittenburg, JP ;
Lieske, H ;
Kloos, H ;
Ohmacht, M ;
Pirsch, P .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2000, 35 (07) :946-952